Пройти Антиплагиат ©



Главная » Материаловедение: материалы, применяемые в машиностроении » Неорганическое стекло: свойства и классификация



Неорганическое стекло: свойства и классификация

Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная. Найти рефераты и курсовые по данной теме Уникализировать текст 



Стекло — оптически прозрачный материал, получаемый при остывании неметаллического расплава. При нагревании стекло размягчается и переходит в жидкое состояние. Стекло изотропно. В отличие от металлов при нагревании стекла нет критических точек. Оно плавится в некотором температурном интервале, который зависит от состава. Для промышленных силикатных стекол температура стеклования (tс) от 425 до 600 °С, температура размягчения (tр) от 600 до 800 °С. В интервале этих температур стекло находится в высоко вязком пластическом состоянии. Технологический процесс переработки стекломассы в изделия происходит при температуре выше tр (1000—1100 °С).
В состав неорганических стекол входят стеклообразующие оксиды кремния, бора, фосфора, германия, мышьяка, образующие структурную сетку; также входят модификаторы: оксиды натрия, калия, лития, кальция, магния, бария. Кроме того, в состав стекла вводят оксиды алюминия, железа, свинца, титана, бериллия, которые самостоятельно не образуют структурный каркас, но могут частично замещать стеклообразующие оксиды и этим придавать стеклу требуемые свойства. Промышленные стекла являются сложными многокомпонентными системами.
На рис. 1 приведена классификация неорганических стекол.
Щелочные стекла содержат оксиды натрия и калия. К техническим стеклам относятся оптические, светотехнические, электротехнические, химико-лабораторные, приборные и трубные стекла, к строительным — оконные, витринные, армированные, а также стеклоблоки. Стекло также используется в быту — стеклотара, посуда, зеркала и декоративные изделия.

Рис. 1. Классификация неорганических стекол
 
Техническое стекло, как правило, относится к алюмоборосиликатной группе и отличается разнообразием входящих в него оксидов. Особое значение имеют электровакуумное, химико-лабораторное и светотехническое стекла.
Электровакуумное стекло применяют в качестве оболочек электрических ламп накаливания, в радиолампах, фотоэлементах, люминесцентных и генераторных лампах, ионных выпрямителях. В качестве электровакуумного стекла используют силикатное, боросиликатное, алюмосиликатное и кварцевое стекла. Основные требования к электровакуумному стеклу — заданное значение коэффициента теплового линейного расширения и стойкость при температурах от 100 до 1000 °С.
Стекло, используемое в химической промышленности, и химико-лабораторное стекло должно иметь химическую стой кость к различным реагентам. В этих случаях используют бороалюмосиликатное стекло с добавлением Zr02 и других оксидов для увеличения его стойкости. Такое стекло используют при транспортировке агрессивных веществ (кислот, щелочей, растворов солей) по трубопроводам диаметром до 200 мм. Стойкость стеклянных труб в 25 раз выше, чем труб из коррозионностойкой стали.
Светотехническое стекло получают из шихты обычного оконного стекла (70-72% Si02; 14-15% Na20; 7-8% СаО; 3—4% MgO; 1—2% K20; 1—2% A1203) или боросиликатного стекла с добавлением специальных компонентов. Для получения рассеивающих (молочных или опаловых) стекол вводят 3—4 % фтористых соединений. Автомобильные и сигнальные стекла изготовляют в виде призматических линз; красные стекла получают введением в шихту 1—2 % сернистого кадмия и 0,5—1 % селена, зеленые — введением 1,2—1,5 % оксида меди и 0,2—0,7 % хрома, желтые — 1,5 % сернистого кадмия. Изготовляют также защитные стекла от рентгеновских лучей, от теплового излучения, стекла для поглощения нейтронов и др.
Важные механические свойства стекла: высокое сопротивление сжатию, низкий предел прочности при растяжении и изгибе. Твердость стекла, как и других неорганических материалов, можно определить методом царапания по минералогической шкале Мооса, она равна 5—7 единицам (10 единиц — твердость алмаза, 1 единица — талька). Ударная вязкость стекла очень низкая, т. е. стекло хрупкое. Более высокими механическими параметрами обладают стекла бесщелочного состава и кварцевые.
Важнейшими специфическими свойствами стекол являются их оптические свойства: светопрозрачность, способность отражать световые лучи, рассеивание, поглощение и преломление света. Обычное неокрашенное листовое стекло пропускает до 90 %, отражает примерно 8 % и поглощает около 1 % видимого и частично инфракрасного света; ультрафиолетовые лучи стекло поглощает почти полностью. Кварцевое стекло является прозрачным для ультрафиолетовых лучей. Коэффициент преломления стекол — 1,47—1,96, коэффициент рассеяния (дисперсии) — от 20 до 71. Стекло с большим содержанием РbО поглощает рентгеновские лучи.
Термостойкость стекла характеризует его долговечность в условиях разного перепада температур и определяется разностью температур, которую стекло может выдержать без разрушения при резком охлаждении в воде (0 °С). Термостойкость стекол — 90— 170°С, кварцевого стекла — 800—1000 °С. Механическую прочность и термостойкость стекла можно повысить закалкой и термохимическим упрочнением.
Закалка — нагревание стекла до температуры выше tс и быстрое равномерное его охлаждение в потоке воздуха или в масле. При этом сопротивление стекла статическим нагрузкам увеличивается в 3—6 раз, ударная вязкость — в 5—7 раз. При закалке повышается также термостойкость стекла.
Термохимическое упрочнение заключается в глубоком изменении структуры стекла и свойств его поверхности. Стекло подвергается закалке в подогретых кремнийорганических жидкостях, в результате чего на поверхности материала образуются полимерные пленки. Этим создается дополнительное упрочнение. Повысить прочность и термостойкость можно травлением закаленного стекла плавиковой кислотой, в результате чего удаляются поверхностные дефекты, снижающие его качество.
В автомобилях, поездах, самолетах используют безопасное закаленное стекло. Многослойное стекло получают склеиванием силикатных и полиакрилатных листов. Силикатные триплексы, используемые в качестве ветровых стекол автомобилей, представляют собой два листа закаленного стекла толщиной 2—3 мм, склеенные прозрачной эластичной полимерной пленкой. При разрушении триплекса неострые осколки удерживаются на полимерной пленке. Триплексы бывают плоскими и гнутыми.
Для остекления транспортных средств используют также термопан — трехслойное стекло, состоящее из двух стекол, между которыми находится воздух, что обеспечивает теплоизоляцию.
 



Лекция, реферат. Неорганическое стекло: свойства и классификация - понятие и виды. Классификация, сущность и особенности. 2018-2019.

Оглавление книги открыть закрыть

Материалы, применяемые в машиностроении
Углеродистые стали
Углеродистые стали обыкновенного качества
Качественные углеродистые стали
Инструментальные углеродистые стали
Чугуны: классификация и свойства
Ковкий чугун
Высокопрочный чугун
Антифрикционные чугуны
Легированные стали: свойства и классификация
Конструкционные легированные стали
Инструментальные легированные стали
Стали и сплавы с особыми свойствами: нержавеющие, шарикоподшипниковые, пружинные, автоматные
Электротехнические стали и сплавы
Порошковые материалы
Сплавы цветных металлов
Медь и ее сплавы
Алюминий и его сплавы
Антифрикционные сплавы
Композиционные материалы
Композиционные материалы с металлической матрицей
Материалы с неметаллической матрицей
Конструкционные материалы на органической основе
Пластмассы: состав, свойства и классификация
Резины: состав, свойства и виды
Конструкционные материалы на неорганической основе
Неорганическое стекло: свойства и классификация
Теплозвукоизоляционные стекловолокнистые материалы
Ситаллы: получение и свойства
Керамические материалы: свойства и виды
Графит и его свойства
Защитные материалы и их виды




« назад Оглавление вперед »
Конструкционные материалы на неорганической основе « | » Теплозвукоизоляционные стекловолокнистые материалы






 

Похожие работы:

Воспользоваться поиском

 

Учебники по данной дисциплине

Производственное оборудование и станки
Стандартизация, метрология, сертификация. Учебник