Пройти Антиплагиат ©



Главная » История нового времени. Лекции » Индустриализация Европы в XIX - начале XX века



Индустриализация Европы в XIX - начале XX века

Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная. Найти рефераты и курсовые по данной теме Уникализировать текст 



Наука в XIX - начале XX в.

Наука в университетах В XIX — начале XX в. научные исследования были локализованы в немногих странах. Дж.Бернал констатирует: «В 1896 году практически вся мировая наука концентрировалась в Германии, Англии и Франции. Остальные же научные центры в Европе и Америке в действительности представляли собой вспомогательные местные филиалы науки этих стран, а в Азии и Африке наука была сравнительно мало развита». Сама научная деятельность осуществлялась на базе университетов. В Германии первую университетскую научную лабораторию создал в 1825 г. выдающийся химик Юстас фон Либих — профессор университета г. Гиссена. Ее школу прошли ученые, оставившие глубокий след в науке: Август Гофман, Фридрих Кекуле, Н.Н. Зинин и многие другие. С 30-х гг. университеты различных германских государств усиленно создают научные лаборатории.
Со второй половины XIX в. в структуре ряда германских университетов появляются научно-исследовательские институты. Они финансировались из университетского бюджета, работали по тематике факультетов, обычно возглавлялись заведующим кафедрой соответствующего профиля. В этих институтах тесно переплетались обучение и научная работа, к которой привлекались не только преподаватели, но и студенты. Научно-исследовательские институты в высших учебных заведениях в короткий срок стали одной из наиболее эффективных форм организации исследований. На рубеже XIX — XX вв. выделились своими достижениями исследовательские центры при Берлинском и Гейдельбергском университетах, Высшей технической школе в Ганновере, Физико-химический институт Вильгельма Оствальда в Лейпциге.
В Великобритании Уильям Томсон (лорд Кельвин) в 1846 г. организовал лабораторию при университете г. Глазго. В 1872 г. начала действовать Кларедонская лаборатория в Оксфорде. К 1874 г. относится официальное открытие получившей впоследствии высочайшую научную репутацию Кавендишской лаборатории при Кембриджском университете. Первым ее директором был один из крупнейших ученых Джеймс Клерк Максвелл. Французские университеты восстановили утраченную при Наполеоне I административную самостоятельность в 1896 г. Наряду с учебной работой они начали подготовку научных кадров и проведение исследований. Для этого создавались специализированные институты и центры, ориентированные на решение практических задач в области химии, агрохимии, бактериологии, гигиены и т.п.

Научно-исследовательские учреждения Европы и США в 19 веке

В конце XIX — начале XX в. в ряде европейских стран и США возникли научные учреждения нового типа — самостоятельные лаборатории и институты. В отличие от университетских они обладали автономией, т.е. имели собственный бюджет, штат, управленческий аппарат, выступали как юридическое лицо. Появление подобных учреждений означало преобразование научной деятельности из индивидуальной в коллективную форму, т.е. переход к новому, более высокому уровню. Это отвечало потребностям времени: сложность и многогранность стоявших перед исследователями проблем требовали для их разрешения усилий многих ученых, зачастую различных специальностей.
Созданию научно-исследовательских институтов способствовала также возникшая на определенном этапе развития необходимость решения общегосударственных научных проблем прикладного характера, которые не вписывались в профиль университетов с их «чистой» наукой и были не под силу частнопредпринимательским организациям. В таких случаях организатором научных исследований становилось само государство. Опыт создания правительственных исследовательских учреждений ведет свою историю с 1676 г., когда в Гринвиче была открыта Королевская обсерватория для наблюдения за небесными телами с целью улучшения навигационных таблиц. Тогда это было не правилом, а исключением, а в XIX в. государственные лаборатории численно умножились и укрепили свое положение. Британское правительство в 1832 г. основало Отдел по геологическим изысканиям, финансировало учрежденное в 1854 г. Метеорологическое управление, которое разместило на побережье континентальной Европы станции по наблюдению за погодой, снабжало военные и торговые корабли приборами для океанографических наблюдений и получало от них отчеты. В 1900 г. была открыта Национальная физическая лаборатория — первый в Англии государственный технический научно-исследовательский институт. На его базе в числе других проводил эксперименты Королевский авиационный завод.
В Германии практические задачи решали Комиссия стандартов, созданная в 1868 г., Государственное статистическое управление (1872). Вне системы высшей школы действовали Государственный физико-технический институт, Институт инфекционных заболеваний Роберта Коха (1891), Институт экспериментальной терапии Пауля Эрлиха (1899). Сами названия организованных в Германии Института морских и тропических болезней (1900), Института мировой экономики и экономики морского транспорта (1914) говорят о тематике и целях проводившихся в них исследований.
В США также появляются учреждения, призванные решать научно-технические вопросы. Это были Армейский корпус инженеров (1802), Армейский исследовательский центр по изучению озер (1841), Армейский корпус связи (1863), Геологическая служба Министерства внутренних дел (1879), Бюро погоды (1890), различные научные подразделения в других ведомствах. Научным центром национального значения стал основанный в 1846 г. в Вашингтоне Смитсоновский институт . Его деятельность субсидировалась и контролировалась федеральным правительством, дававшим заказы на исследования в области геологии, географии, химии, метеорологии, военно-инженерного дела. В XX в. государственное регулирование научных исследований стало еще более широким. В 1901 г. организовано Националъное бюро стандартов. Выявившееся с началом Первой мировой войны отставание ряда отраслей военной промышленности побудило учредить в 1915 г. Военно-морской консультативный комитет и Национальный консультативный комитет по аэронавтике (предшественник позднейшего НАСА — Национального управления по аэронавтике и освоению космоса). Созданный в 1916 г. Национальный исследовательский совет, включивший чиновников, представителей благотворительных фондов. Национальной академии наук, университетов и промышленных лабораторий, координировал работу по научно-техническому обеспечению производственных программ.

Капиталистический сектор науки в 19 веке

Переход к монополистической стадии капитализма и расширение производства стимулировали новую тенденцию в развитии науки: более активное приложение ее к практике. В это время достижения науки не только продвинули далеко вперед теоретические представления в самых различных областях знания, но и преобразовали многие технологии, оживили старые и создали предпосылки для возникновения новых отраслей промышленности. Наука постепенно становилась существенной составной частью производства. В связи с этим монополистические объединения проявляли все большую заинтересованность в научных исследованиях. В начале XX в. в США была найдена эффективная возможность вложения средств в науку. Налоговое законодательство страны предоставило значительные льготы частному капиталу, предназначенному для благотворительной деятельности в области культуры, образования, науки. Крупнейший владелец железнодорожных и сталелитейных компаний Эндрю Карнеги, отойдя от дел и продав свои предприятия, в 1902 г. создал благотворительный фонд своего имени. Поместив в него деньги, Карнеги освободил от уплаты подоходного налога значительную часть состояния и в то же время наладил систематическое финансирование исследовательских работ. К 1915 г. число подобных фондов достигло 27 и в дальнейшем продолжало быстро расти. Рокфеллеровский Институт медицинских исследований в 1920 г. имел бюджет в 23 млн дол. Подобные инъекции частного капитала привели к тому, что американская наука в некоторых отраслях начала опережать европейскую.
В других странах нашли место иные формы финансирования и организации научной деятельности частнопредпринимательскими компаниями. Во Франции общества кооперативных исследований аккумулировали добровольные вклады промышленных предприятий. Они, так же как и в США, освобождались от уплаты налогов. Результаты исследований переходили в пользование всех пайщиков. В Германии ориентация монополий на использование научных достижений и новейших технических решений выразилась в формировании Общества содействия развитию науки имени кайзера Вильгельма, созданного в 1911 г. Оно имело статус самоуправляющейся организации под покровительством канцлера. Финансовое обеспечение шло за счет средств промышленных монополий. В рамках Общества кайзера Вильгельма к 1914 г. действовало 37 институтов, тесно связанных с промышленностью. Большинство из них наряду с фундаментальными проводило и прикладные исследования по заказам металлургической, химической, угольной и других отраслей промышленности. Высокую эффективность в обеспечении научно-технического прогресса показали промышленные лаборатории. В качестве профессионально действовавших постоянных научно-исследовательских организаций они впервые появились еще в 1850 г. для обслуживания германской лакокрасочной промышленности. Затем эта форма организации прикладных исследований распространилась и в других странах, особенно в США.

Учреждение Нобелевской премии

О возросшем авторитете науки свидетельствует международное признание
Нобелевской премии, названной по имени ее учредителя — шведского инженера, изобретателя динамита и бездымного пороха Альфреда Нобеля. Он был не только крупным исследователем, но и удачливым предпринимателем, одним из самых богатых европейских капиталистов. Незадолго до кончины, в 1895 г., Нобель достойно распорядился своим состоянием, завещав 31 млн шведских крон из имевшихся у него 33 млн (или 9 млн дол., что эквивалентно примерно 100 млн дол. в конце 70-х гг. XIX в.) на выплату премий его имени. В завещании говорилось: «Капитал мои душеприказчики должны перевести в процентные бумаги, создав фонд, проценты с которого будут выдаваться в виде премии тем, кто в течение предшествующего года принес наибольшую пользу человечеству.
Указанные проценты следует разделить на пять равных частей, которые предназначаются: первая часть тому, кто сделал наиболее важное открытие или изобретение в области физики, вторая — тому, кто совершил крупное открытие или усовершенствование в области химии, третья — тому, кто добился выдающихся успехов в области физиологии или медицины, четвертая — создавшему наиболее значительное литературное произведение, отражающее человеческие идеалы, пятая — тому, кто внесет весомый вклад в сплочение народов, уничтожение рабства, снижение численности существующих армий и содействие мирной договоренности» .
Созданные отдельно по каждой из премий Нобелевские комитеты на основе предложений научной общественности в обстановке строгой тайны решают вопрос о кандидатах. Первые присуждения Нобелевских премий состоялись в 1901 г. Их получили Эмиль фон Беринг за работы в области физиологии и медицины, Вильгельм Конрад Рентген — по физике и Якоб Хенрик Вант-Гофф — по химии.

Революционный переворот в физике

Наукой, положившей начало революционным преобразованиям в естествознании, стала физика. В 1895 г. Рентген открыл глубоко проникающие лучи, названные впоследствии рентгеновскими. Спустя совсем немного времени, 20 января 1896 г., американские врачи с помощью лучей Рентгена впервые увидели перелом руки человека. Это произвело ошеломляющее впечатление. Открытие рентгеновских лучей дало толчок новым исследованиям: в 1896 х.Анри Беккерель обнаружил излучение урана, т.е. явление радиоактивности. Это направление в физике продолжили Пьер Кюри и его жена Мария Складовская-Кюри, которые нашли более сильные, чем уран, источники радиоактивности — полоний и радий. Последний мог причинить непоправимый вред здоровью находившихся вблизи от него людей. В 1903 г. П. Кюри иА. Лаборд, зафиксировав выделение радием теплоты, установили существование внутриатомного источника энергии. Последовавшие одно за другим открытия доказали сложность строения атома, наличие в его составе положительно заряженного ядра {Эрнест Розерфорд), вращающихся по принадлежащих им орбитам отрицательных частиц-электронов {Джозеф Джон Томсон), их движение по собственным орбитам, изменение которых приводит либо к излучению, либо к поглощению энергии {Нильс Бор), возможность расщепления атома (Розерфорд). Совокупность этих и других открытий, их теоретическое осмысление привели к созданию ядерной физики.
Вновь установленные явления не согласовывались с господствовавшей в XIX в. идеей непрерывности физических процессов. Это противоречие разрешил Макс Планку выдвинувший в 1900 г. предположение, согласно которому атомы отдают энергию не непрерывно, а выделяют ее порциями, квантами. Этим в науку был введен принцип дискретности, т.е. раздельности, прерывности. Отсюда вытекало, что в природе наряду с явлением непрерывности закономерно имеют место и скачкообразные процессы.
Стремительный рывок совершила теоретическая физика в связи с разработкой Альбертом Эйнштейном специальной (1905) и общей (1916) теории относительности. Раскрывая ее сущность, Эйнштейн подчеркивал: «Теория относительности изменяет законы механики. Старые законы несправедливы, если скорость движущейся частицы приближается к скорости света. Новые законы движения тела, сформулированные теорией относительности, блестяще подтверждаются экспериментом» . В свете теории относительности безраздельно господствовавшие геометрия Эвклида и теория тяготения Ньютона предстали как отражение частных условий материального мира. Установленные же Эйнштейном законы поля и движения отразили более общие закономерности природы. Он пришел к выводу о тесной связи свойств пространства и времени с материей.

Достижения химической науки

Вторая половина XIX в. характеризовалась выдающимися достижениями в области химии. В 1869 г. Д.Я. Менделеев открыл периодический закон, согласно которому химические и физические свойства элементов находятся в зависимости от их атомных весов. На основе найденной закономерности Менделеев предсказал и точно описал свойства трех не известных еще науке элементов. Впоследствии они были экспериментально выделены: в 1875 г. — галлий, в 1879 г. — скандий и в 1886 г. — германий. Менделеевская периодическая таблица показала свои неоспоримые прогностические возможности, что неоднократно подтверждало открытие новых элементов.
Интенсивное развитие полумила физическая химия, предмет которой — исследование физических изменений в связи с химическими реакциями. Ее успехи во многом связаны с деятельностью Вильгельма Оствальда, Якоба Хепдрика Вант-Гоффа, Сванте Аррениуса. Под влиянием теоретических исследований этих ученых значительно продвинулось практическое использование достижений химической науки в промышленности, включая получение серной и азотной кислот, белильной извести и едкого натра, анилина, электрохимические процессы добывания металлов и т.п. Благодаря работам Фридриха Августа Кекуле, ЖозефаЛе Беля, A.M. Бутлерова сформировалась органическая химия, объектом которой являются соединения углерода. Созданная трехмерная модель расположения атомов в пространстве дала возможность анализировать и синтезировать сложные соединения. В результате были получены новые синтетические красители и синтетические материалы: пластмассы (целлулоид, бакелит), искусственный шелк, вискозные химические волокна, заменители каучука и др.

Великие открытия в биологии

Развитие биологической науки в конце XIX в. связано прежде всего с окончательным утверждением эволюционной теории. Автор «Происхождения видов» (1859) Чарльз Дарвин в 1871 г. опубликовал книгу «Происхождение человека», в которой обосновал процесс его эволюции. Важную роль в разработке эволюционных идей сыграл и Томас Гексли — второй после Дарвина создатель теории видообразования.
Дарвину было ясно, что изменения в отдельном виде порождают эволюцию, но он не смог объяснить, чем вызывается сама изменчивость видов. Природу наследственного механизма раскрыл чешский натуралист Грегор Иоганн Мендель. Он установил, что в ядре каждой клетки содержится некий, по его представлениям, наследственный фактор, содержащий некоторые признаки организма и отвечающий за их передачу по наследству. В результате индивидуальные свойства передаются из поколения в поколение без смешения и усреднения. Свои опыты Мендель завершил в 1866 г., но они не получили признания у современников. Лишь в 1900 г. голландский ученый Хуго де Фриз, немецкий исследователь Карл Эрих Корренс и австрийский биолог Эрих Чермак независимо друг от друга и почти одновременно вторично открыли и сделали всеобщим достоянием законы наследственности Менделя. В 1909 г. датчанин Вильгельм Людвиг Иогансенция обозначения единицы наследственного материала ввел понятие «ген», ставшее общепринятым термином.
Привели к важным открытиям исследования в области цитологии — науки о строении, развитии и функциях клеток. Еще в 70 — 80-х гг. XIX в. Вальтер Флеминг выявил в ядре клетки структурные образования, получившие название «хромосомы». После начатых в 1910 г. опытов Томаса Ханта Моргана стала окончательно ясной связь между генами и хромосомами. Гены являются частью хромосом и носителями отдельных наследственных свойств и признаков, а хромосома содержит наследственную информацию в целом. Но сами гены далеко не во всех случаях устойчивы. Это в 1900 г. заметил Хуго де Фриз, который внезапные изменения признаков у потомков назвал мутациями. Своим возникновением они обязаны либо случайным в развитии организма событиям, либо искусственным воздействиям, при которых поражается один из генов. Развитие биологии и ее составной части — генетики укрепили теорию эволюции живого мира.

Связь науки и техники

Великие открытия в теоретической науке в момент их свершения в большинстве случаев еще не оказывали непосредственного воздействия на отдельные отрасли промышленного производства или сельского хозяйства. Для этого потребуется время. Но они поднимали общий уровень теоретических исследований, которые давали возможность привести в систему известные данные и на основе целостных знаний о предметах и явлениях дать ключ к решению технических проблем. Дж. Бернал идею приоритета науки в научно-техническом прогрессе выразил словами: «Постоянные и накопленные со временем усовершенствования в технике могут исходить от инженеров, но выдающиеся преобразования происходят лишь в результате вмешательства науки» . Только после того как естествознание открыло и изучило различные виды материи и формы ее движения, многообразные силы природы и их законы, техника получила возможность практически их использовать. Электротехника и электроэнергетика, переработка нефти и химическое производство в целом, моторостроение, авиация и многие другие отрасли стали возможны лишь в результате научных открытий и крупнейших изобретений. Прогресс техники постепенно, но неуклонно оказался в прямой зависимости от научных достижений, машинная индустрия по-существу явилась технологическим воплощением науки.

Технический прогресс XIX - начала XX в. Завершение промышленной революции

Во второй половине XVIII в. начинается и на протяжении XIX в. завершается переход от мануфактурной формы организации труда к крупной машинной индустрии. Коренная перемена способа производства по своему всеобъемлющему воздействию на все стороны жизни общества и последствиям, которые наступили в результате замены ручного инструментального труда машинным, представляла собой промышленную революцию, или, что одно и то же, промышленный переворот. Его основная черта состояла в переходе от аграрной, ремесленной экономики к преобладающему городскому машинному производству и формированию индустриального общества. В результате возникла крупная машинная фабрично-заводская индустрия, ускорился технический прогресс. Одновременно возросла доля промышленного производства и относительно сократился удельный вес сельского хозяйства в валовом национальном доходе. В социальном плане промышленный переворот привел к формированию и росту численности фабричного пролетариата, усилению и укреплению положения промышленной буржуазии.
Составной частью промышленной революции являлся технический переворот, т.е. процесс коренных изменений технических средств, переход к машинной технике фабричного производства. Крупная фабричная индустрия основывалась на принципиально новом типе рабочих машин, которые получали от двигателя через передаточные механизмы соответствующее движение и совершали своими орудиями операции, выполнявшиеся раньше непосредственно рабочими. Применение машин-орудий позволило разделить технологический процесс на такие составные части, каждую из которых были способны выполнять технические средства. Это в свою очередь обеспечило возможность кооперирования многих машин, в совокупности составлявших взаимосвязанную систему.
Первый этап технической революции начался с появления рабочих машин в текстильном деле. Второй ознаменовался изобретением универсального теплового двигателя, представленного паровой машиной. Третий связан с созданием рабочих машин в машиностроении, что оказалось возможным после изобретения суппорта, или резцедержателя. Производство машин самими машинами обеспечило массовый выпуск машинной техники для всех отраслей промышленности. Наступила эра господства машин.
По отдельным регионам техническая революция, как и в целом промышленный переворот, протекала отнюдь не синхронно. Англия стала страной, открывшей эпоху промышленной революции. Здесь в связи с повышением спроса на промышленные изделия, удовлетворить который оказалось возможным только с помощью механизации, она началась в 60 — 80-е гг. XVIII в. и завершилась в 30 — 50-е гг. XIX в. Первоочередное развитие базовых отраслей производства, обеспечивших промышленность сырьем и полуфабрикатами — каменным углем, железом, пряжей, обеспечило подъем всей обрабатывающей промышленности. Массовое распространение машин и фабричного производства во всех отраслях и по всей стране привело к окончательной победе машины над остатками ремесленного производства. В результате многократного увеличения производительной силы технических средств в Англии в 1840 г. за день изготовлялось товаров в 27 раз больше, чем в 1770 г., когда страна только начинала переходить к образованию машинно-фабричной системы. На ее долю приходилось примерно половина мирового рынка промышленных изделий и около трети мирового промышленного производства. Но значение промышленной революции не сводилось к одному только росту производства. Она изменила социальную структуру общества, весь уклад жизни тех людей, кто оказался вовлеченным в ее орбиту.
Вслед за Англией промышленный переворот произошел и в других странах Европы, хотя в силу специфических особенностей каждой из них протекал в более поздние сроки. Во Франции, пока производство ориентировалось на выпуск изделий ручной выработки, потребность в механизации ощущалась слабо, и лишь с повышением спроса на промышленную продукцию и возникновением в связи с этим дефицита сырья и полуфабрикатов разворачивается промышленная революция в базовых отраслях, завершившаяся к 60-м гг. В Германии аналогичный процесс длился еще дольше — до 90-х гг. XIX в. Несмотря на асинхронность промышленных переворотов, повсюду в итоге капиталистический способ производства, составлявший до этого лишь один из укладов, становился господствующим. Завершение промышленных революций создало базу для развертывания фабричного производства, характеризовавшегося широкомасштабной организацией производственного процесса, более глубоким разделением труда, изготовлением изделий не вручную, а машинами. В связи с этим возросли роль науки, ее влияние на материальное производство, возникла объективная потребность в массовом внедрении технических изобретений и усовершенствований. Это вызвало глобальные последствия. Господство машинного производства означало становление индустриальной цивилизации. Фабрика стала определять экономический облик Европы, а машина приобрела черты символа эпохи. Научно-технический прогресс стал важнейшим фактором, позволившим Западной Европе возвыситься над остальным миром.

Станкостроение в 19-20 веках

Возросшее значение машин в различных отраслях производства вызвало интенсивное развитие машиностроительной промышленности и ее технической базы — станкостроения. Основной линией развития станочного парка стал переход к специализированным станкам, предназначенным для выполнения одной или нескольких аналогичных операций. Сужение функций станков вело к упрощению выполнявшихся операций и создало условия для использования автоматизированных процессов.
Рост объема металлообработки вызвал необходимость усовершенствования средств резания металлов. Был создан ряд твердых сплавов для режущих инструментов, повышена точность изготовления деталей машин. Английский станкостроитель Джозеф Витворт ввел в практику машиностроения измерительные калибры, которые позволяли измерять обрабатываемые поверхности с точностью до тысячных долей миллиметра, впервые стандартизировал резьбу на винтах, что впоследствии дало толчок к созданию унифицированных деталей и узлов машин.
Параллельно шло техническое совершенствование других видов металлообрабатывающих машин. В 70 — 80-х гг. на заводах Круппа в Германии работали паровые молоты с массой падающих частей 50—75 т, а в 1891 г. в США построили молот с массой рабочей части 125 т. Сложность эксплуатации таких установок побудила к производству гидравлических прессов. С их помощью удавалось создавать усилия, эквивалентные усилиям молота с массой падающей части до 500 т.

Поточное производство

Новые явления в машиностроении имели далеко идущие последствия. Формирование системы металлообрабатывающих машин в сочетании с применением точных измерительных инструментов и внедрением стандартов подготовило техническую базу для перехода от индивидуального к мелкосерийному, а затем к серийному, крупносерийному и массовому производству. Для него характерна организация поточных линий, т.е. набора рабочих машин, расположенных в технологически обусловленной последовательности. Передача обрабатываемых изделий после выполнения операции на следующее рабочее место обеспечивалась межоперационными транспортными устройствами. В наиболее механизированных производствах это были конвейерные системы изготовления и сборки изделий. Впервые поточное производство осуществила автомобилестроительная компания Генри Форда, а теоретическое обоснование дал Фредерик Тейлор. Технология организации труда, получившая его имя, направлялась на максимальное уплотнение рабочего дня, рациональное использование средств производства и орудий труда, повышение производительности.

Машины-двигатели

Вплоть до 70 - 80-х гг. XIX в. в крупном промышленном производстве в качестве силовой установки доминировали универсальные поршневые паровые машины. Благодаря многим техническим изобретениям они стали значительно совершенней: появились более производительные паровые котлы и многоцилиндровые двигатели, намного повысилась мощность, а коэффициент полезного действия к концу века увеличился впятеро. Но на определенном этапе развития паровые машины стали сдерживать развитие производства и морского транспорта. Они оставались относительно тихоходными, требовали при изготовлении много металла, были громоздкими, использовавшийся трансмиссионный привод исключал возможность перехода к прогрессивному поточному производству, к тому же оказались совершенно непригодными для зарождавшегося автомобилестроения.
Одно из направлений поиска новой двигательной установки состояло во внедрении паровой турбины, в которой энергия сжатого водяного пара непосредственно превращается в механическую энергию вращательного движения вала (ротора) без какой-либо передачи. Наиболее удачно эту проблему независимо друг от друга решили Карл Густав Лаваль в 1883 г. и Чарльз Парсонс в 1884—1885 гг. Уже в 1894 г. был проведен удачный эксперимент по оснащению турбинами корабля, вскоре турбинные установки получили широкое распространение в морском коммерческом и военном кораблестроении, на тепло- и гидростанциях.
Путь к созданию двигательной установки, пригодной для механических безрельсовых транспортных средств, наметил Этьен Ленуар, который в 1860 г. построил напоминавший паровую машину газовый двигатель. Сделать его более эффективным удалось в 1876 г. Николаю Августу Отто. Он создал двигатель внутреннего сгорания с четырехтактным циклом. Этот принцип сохранился и в моторах нашего времени, но сам двигатель Отто оказалось возможным использовать лишь для работы в стационарных условиях.
Быстроходным, компактным и легким двигатель стал после перехода на жидкое горючее. Приоритет в этом принадлежит Готлибу Даймлеру, создавшему в 1882 г. бензиновый мотор. В 1896—1899 гг. Рудольф Дизель сконструировал двигатель, способный работать на тяжелом жидком топливе. Сложились предпосылки для бурного роста автомобилестроения, а также, тракторо- и самолетостроения.

Электротехника

Еще в первой половине XIX в. Открытия Андре Мари Ампера, Майкла Фарадеяч Эмиля Ленца и других ученых создали теоретическую основу практической электротехники, выявили возможность превращения электрической энергии в механическую. Многочисленные попытки создания электродвигателей шаг за шагом приводили к удачным техническим решениям. В двигателе, который в 1834 г. построил Б.С. Якоби, электромагнитные воздействия преобразовывались во вращательное движение; этот эффект в будущем позволил электродвигателю стать универсальным.
Одновременно шло последовательное совершенствование генераторов — машин, «производящих» электрический ток за счет другой энергии: механической, тепловой, химической. В конце 60-х гг. Кромвель и Самюэль Варли, а также Вернер
Сименс создали первые генераторы постоянного тока. Они получили название динамо-машин. Их надежность и эффективность были низкими, однако в 1870 г. Зеноб Теофил Грамм, а затем в 1873 г. Фридрих Гефнер-Алыпенек внесли столь кардинальные изменения, что динамо-машина стала пригодной для питания электрических двигателей, освещения и других целей. В этом же 1873 г. Ипполит Фонтен на практике доказал, что динамо-машина может работать и генератором, и двигателем, т.е. превращать механическую энергию в электрическую и наоборот — преобразовывать электрическую энергию в механическую. С началом XX в. электрические двигатели, получив репутацию безотказного и экономичного источника механической энергии, начали активно внедряться в производство. Здесь они прежде всего дали возможность оснастить каждый станок собственным электродвигателем с индивидуальным приводом, что обеспечило простоту и быстроту пуска, возможность регулировать скорость вращения, компактность, приспособляемость к любым производственным процессам.
На протяжении 70-х гг. был найден способ использования электрической энергии для освещения. А.Н. Лодыгин предложил лампы накаливания с угольными стержнями, /7.Н. Яблочков их усовершенствовал, Томас Эдисон создал вакуумную лампу с угольной нитью, которую затем заменили вольфрамовой.
Электродвигатель, электропривод, электроосвещение имели практический смысл лишь при условии решения проблемы транспортировки электрической энергии от производителя к потребителю. В 1882 г. Марсель Депре построил линию электропередачи протяженностью 57 км. Изобретения Николы Теслы и М.О. Доливо-Доброволъского в области электротехники, генерирования и передачи электроэнергии позволили осуществить экономичное электроснабжение на большие расстояния, начать широкую электрификацию. Со второй половины 90-х гг. в экономически развитых странах развернулось массовое строительство электрических станций.

Железнодорожный и городской транспорт

В последней трети XIX - начале XX в. установились надежные и разветвленные транспортные сообщения в большинстве стран и между ними. Многие железные дороги пролегли на тысячи километров. Железнодорожный транспорт оказал огромное воздействие на развитие экономики не только как наиболее эффективное средство перемещения людей и грузов, но и как крупнейший потребитель металла, угля, паровых машин и других механизмов, строительных материалов, древесины. Коренной модернизации подверглась и сама железнодорожная техника. Совершенствование паровозов, замена железных рельсов стальными обеспечили скорость поездов в 100 и более километров в час, а их грузоподъемность — в сотни тонн. Появились новые типы вагонов, в том числе четырехосные пассажирские и товарные пульмановские, названные так по имени их создателя Джорджа Пульмана. Джордж Вестингауз в 1869 г. изобрел пневматический тормоз, нашедший повсеместное применение после 1872 г., когда его действие было автоматизировано. От ручной винтовой сцепки вагонов начали переходить к автоматической.
Вернер Сименс, впервые продемонстрировавший на Берлинской промышленной выставке 1879 г. действующую электрическую железную дорогу, реализовал идею применения на транспорте электродвигателя. Интенсивная инженерная мысль привела в последующие годы к созданию городского электрифицированного транспорта — трамвая. В 1885 г. Чарльз Джозеф Ван-Депуль построил в канадском городе Торонто трамвай с одним воздушным рабочим проводом, подвешенным на столбах с изоляторами. Эта система оказалась столь рациональной, что вскоре получила общее признание. В 1890 г. воздушный провод впервые появился в Европе на трамвайной линии в Галле (Пруссия). К 1890 г. в крупнейших городах США и Европы трамвай, который зарекомендовал себя одним из наиболее экономичных и массовых видов городского транспорта, полностью вытеснил конку.
Появление городов с миллионным и более населением превратило внутригородские перевозки в серьезную проблему. Во многом ее решил метрополитен — надземный (на эстакадах) и подземный. Первую подземную дорогу построили в Лондоне в 1863 г. Она была неглубокого залегания, длиной всего 3,6 км и обслуживалась паровозами. Переломным рубежом явился переход в 1890 г. лондонского метрополитена на электрическую тягу. Она быстро показала свои преимущества, и метростроение получило мощный стимул к широкому развитию. Метрополитены открываются в Будапеште (1896), Вене (1898), Париже (1900), Берлине (1902), Гамбурге (1912), ряде городов Американского континента.



Лекция, реферат. Индустриализация Европы в XIX - начале XX века - понятие и виды. Классификация, сущность и особенности. 2018-2019.


Развитие морского транспорта, создание автомобиля, воздухоплавание, металлургия в эпоху Нового времени

Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная. Найти рефераты и курсовые по данной теме Уникализировать текст 



Морской транспорт

Достижения науки и техники создали необходимую основу для удовлетворения возросших потребностей в морских перевозках. Этапным событием в кораблестроении стал спуск на воду в 1858 г. английского колесно-винтового парохода с дополнительным парусным оснащением «Грейт Истерн», который в 5 раз превышал водоизмещение наиболее крупных кораблей-предшественников. Он отразил черты уходившей эпохи парусного флота и технического прогресса XIX в., который воплотился в новейших по тем временам идеях: конструкция предусматривала двойное дно, поперечные переборки, продольную систему набора корпуса (через столетие так будут строиться все сверхбольшие корабли). Корабль был обшит железными листами — спор между деревом и железом был разрешен окончательно. «Грейт Истерн» имел три паровые машины: отдельно для поворота руля, вращения гребного винта и бортовых гребных колес. Судно было рассчитано на рейс без промежуточной загрузки топлива из Англии в Австралию вокруг Африки с 4 тыс. пассажиров или 10 тыс. солдат и 6 тыс. т груза в трюмах (фактически оно эксплуатировалось на трансатлантической линии, а затем использовалось как кабелеукладчик в Атлантическом и Индийском океанах. С началом массового производства стали железо уступило ей место и в кораблестроении. Три первых стальных корабля построили в Англии в 1864 г., но преимущественно стальное кораблестроение начинается с конца 80-х гг. Только тогда был превзойден по размерам «Грейт Истерн». В Англии строятся лайнеры «Селтик» (1903), «Лузитания» и «Мавритания» (1907), однотипные «Олимпик» (1911) и «Титаник» (1912), совершивший единственный и трагически закончившийся рейс. На морские маршруты вышли и суда специального назначения: рефрижераторы для перевозки скоропортящихся грузов, нефтена-ливные танкеры, ледоколы.

Создание и развитие автомобиля

Появление двигателя внутреннего сгорания стало решающей предпосылкой для создания автомобиля. На первенство в его изобретении претендовали 416 человек, но приоритет официально признан за Готлибом Даймлером и Карлом Бенцем. Не будучи даже знакомы, они спроектировали и построили в 1885—1886 гг. самодвижущиеся повозки, защищенные надлежащими патентами. Лишь в 1926 г. образованные ими автомобильные фирмы слились в компанию «Даймлер-Бенц». Первая машина Даймлера была двухколесной, фактически прообразом современного мотоцикла. Для второго экземпляра был использован четырехколесный фаэтон. Бенц построил трехколесную машину. Автомобили Даймлера и Бенца не нашли спроса в Германии, и изобретатели продали свои патенты во Францию, что надолго сделало ее ведущей автомобильной державой. Здесь проявили себя и другие выдающиеся конструкторы. Эмиль Лавассор предложил новую компоновку автомобиля, при которой двигатель и радиатор охлаждения располагались впереди. В гонке 1895 г. приняла участие машина с пневматическими шинами. В 1898 т. Луи Рено заменил цепной привод карданным валом, а затем установил рулевое колесо. Автомобили начала XX в. отличались исключительно тщательной подгонкой деталей и отделкой, непрерывно и быстро совершенствовались, расширился диапазон их применения. В 1904—1905 гг. появились автобусы. К 1914 г. в Лондоне их было более двух тысяч. С повышением надежности машин уже в начале века развернулось производство грузовых автомобилей. В 1905 г. изобрели счетчик-таксометр, отсюда таксомоторы, такси, ставшие неотъемлемой частью городского транспорта. В дни сражения на Марне во время Первой мировой войны французское командование мобилизовало 1200 парижских таксомоторов, за одну ночь перебросивших пехотную бригаду на расстояние 50 км. Это было первым в истории использованием автомобильного транспорта для массовых военных перевозок.

Воздухоплавание

Задача создания самолета усилиями многих ученых и конструкторов в теоретическом плане оказалась близкой к решению уже к концу XIX в. Первые же успешные полеты на аэроплане связаны с именами братьев Вилбура и Ореилла Райт. Начав конструкторскую деятельность в 1899 г., они построили оснащенный бензиновым мотором самолет, названный ими «Флайер», т.е. летающий. 17 декабря 1903 г. Райт четырежды поднимался в воздух, продержавшись в полете от 12 до 59 с. На Европейском континенте впервые полет на самолете собственной конструкции совершил 23 октября 1906 т.Альберто Сантос-Дюмон, преодолевший расстояние в 60 м. Создаются новые, более совершенные модели, и 25 июля 1909 г. Луи Блерио перелетел через Ла-Манш. Повышение летных возможностей авиационной техники позволило выйти за рамки спортивного применения самолетов, использовать их для грузовых и почтовых перевозок, в военных целях. В конце XIX — начале XX в. получило развитие дирижаблестроение, и здесь стимулирующим фактором стал компактный бензиновый двигатель. Наибольших успехов добился немецкий инженер и предприниматель Фердинанд Цеппелин. Он построил несколько гигантских дирижаблей. Наибольший из них имел длину 200 и диаметр 24 м, развивал скорость более 100 км в час, пролетал до 7400 км и поднимался в высоту на 4 км. Эксплуатация показала и недостатки дирижаблей: сложность наземного базирования, пожароопасность, уязвимость. Создание автомобиля и воздухоплавательных аппаратов оказалось возможным на базе синтеза ряда отраслей промышленности, а потому не только революционизировало транспорт, но и стимулировало прогресс металлургии, машиностроения, химии и многих других видов производства.

Металлургия

К 70-м гг. XIX в. быстро развивавшиеся машиностроение, железнодорожный и морской транспорт потребовали значительного расширения производства черных металлов и повышения их качества. В связи с этим усовершенствовался процесс производства чугуна: увеличились размеры доменных печей, модернизировалась их конструкция, вводились новые вспомогательные устройства. К концу столетия сложилась конструкция доменной печи, принципиально не отличавшаяся от современной. Металлурги стали больше внимания уделять подготовке железной руды к плавке, применять ее дробление, обжиг, промывку. В начале XX в. внедрился процесс агломерации, заключавшийся в укрупнении мелких руд путем спекания в специальных устройствах. Почти повсеместно в качестве топлива для выплавки чугуна стали применять каменноугольный кокс , вытеснивший антрацит и древесный уголь. В результате резко повысилась производительность доменных печей, а мировая выплавка чугуна возросла с 4,5 млн т в 1850 г. до 78,4 млн т в 1913 г. Сложной была и научно-техническая проблема переплавки чугуна в железо и сталь. Применявшийся вплоть до 70-х гг. XIX в. метод пудлингования чугуна ввиду его медленности и трудоемкости уже не мог удовлетворить потребности тяжелой промышленности. Английский изобретатель Генри Бессемер в 1855—1860 гг. создал новый способ передела чугуна в ковкое железо и сталь. Он сконструировал специальную установку — конвертер, где через жидкий чугун продувается сжатый воздух. Превращение чугуна в сталь в конвертере происходит в результате окисления кислородом воздуха входящих в состав чугуна углерода, кремния и марганца, очищения металла от их избытка. Процесс бессемерования происходит без подвода тепла извне и без применения какого-либо горючего материала: необходимое тепло образуется благодаря химической реакции окисления железа и его примесей. Выплавка стали этим способом протекает чрезвычайно быстро. В конвертере 10—15 т чугуна превращаются в железо или сталь за 10 мин. Чтобы получить такое же количество стали, требовалось несколько дней работы пудлинговой печи. Но в изобретении Бессемера были и изъяны. В частности, не удавалось освобождать металл от вредных примесей серы и фосфора, которые целиком переходили в сталь. Выход нашел английский металлург Сидней Томас, предложивший в 1878 г. применить для огнеупорной кладки доломитовый кирпич и вводить в конвертер 10—15% извести. Это привело к тому, что фосфор и сера удерживались в образовывавшихся шлаках. В результате количество фосфора снижалось с 1—2% в чугуне до сотых долей процента в стали. Открытие Томаса позволило ввести в промышленный оборот огромные залежи фосфористых железных руд, в том числе Лотарингского бассейна, чем в максимальной степени воспользовалась Германия. В то же время конвертеры не позволяли перерабатывать так называемый скрап — металлический лом, который в изобилии имелся в развитых странах. Ситуацию исправил французский металлург Пьер Мартен, который в 1884 г. построил сталеплавильную печь, названную его именем. Мартеновская печь поз-воляла за счет более высокой температуры и других технических особенностей выплавлять сталь из смеси 30% чугуна и примерно 70% железного и стального лома. Высокая производительность и хорошее качество выплавляемой стали сделали мартеновский процесс преобладающим в сталелитейном производстве. В конце XIX — начале XX в. были найдены способы использования энергии электрического тока для получения наиболее качественных сортов стали. Ряд инженеров из Франции, Италии, Швеции, России предложили конструкции электропечей. Их преимущества по сравнению с другими сталеплавильными агре-гатами состояли в возможности достижения более высокой температуры, способности переплавлять скрап легированных сталей, производить высококачественные сплавы с тугоплавкими легирующими элементами. Электропечи нашли широкое применение для получения ферросплавов , выплавки цветных металлов, в том числе алюминия. Алюминиевая промышленность уже в начале XX в. выросла в крупную отрасль.

Химическая промышленность

В последней трети XIX - начале XX в. значительно продвинулась вперед промышленная химия. При изготовлении минеральных удобрений, солей, кислот, красителей, взрывчатых веществ, в металлургической, нефтяной, текстильной про-мышленности широко использовалась серная кислота. Масштабы ее производства во многом стали определять уровень этих и других отраслей. Традиционные методы получения серной кислоты оказались недостаточными, и многие исследователи пытались найти новые пути. Наиболее удачными оказались идеи и практические разработки немецкого ученого Клеманса Александра Винклера и его соотечественника инженера Рудольфа Книтча. Они предложили и внедрили принципиально новую, так называемую контактную, технологию, что дало воз-можность производить серную кислоту любой концентрации и в необходимых количествах. С наибольшей выгодой этим изобретением воспользовались немецкие промышленники, обеспечившие за счет него преимущество на международном рынке анилинокрасочной промышленности. Другим важным компонентом ряда технологических процессов является сода. В 1861 г. бельгийский инженер Эрнест Сольве предложил новый способ ее получения из естественных или искусственных растворов поваренной соли, известняка и аммиачной воды, причем сам процесс был более коротким, не вызывал загрязнения окружающей среды и давал соду высокой чистоты. Он оказался настолько удачным, что в своей основе дошел до наших дней. Изобретение и массовое распространение двигателей внутреннего сгорания, развитие производства синтетических веществ и материалов создали широкое поле деятельности для нефтеперерабатывающей промышленности. До 70-х гг. нефте-перегонные заводы изготовляли преимущественно керосин, который использовался для освещения, а также в качестве растворителя и при очистке поверхностей в технике и медицине. С развитием автомобильного транспорта и авиации возросло потребление бензина, тяжелых видов топлива и смазок. Внедрение прогрессивных методов нефтепереработки позволило выпускать многие ценные продукты: синтетические органические материалы, ароматические вещества, нафталин, парафин, вазелин, смолы и т.п. В других отраслях химического производства были усовершенствованы технологии переработки древесины и получения бумаги, производства специальных видов стекла и изделий из него, изготовления маргарина, моющих и косметических средств, лекарственных препаратов, красящих и клеящих веществ, удобрений. Химическая индустрия превратилась в одну из ведущих отраслей хозяйства.

Строительство

В XIX — начале XX в. в промышленном и гражданском строительстве по-прежнему преимущественно использовался кирпич, но заметно возросло значение и других строительных материалов. Прежде всего изменилась роль железа. Его не только стали применять для покрытия крыш и изготовления крепежных деталей, но и использовать в качестве опор и каркасов сооружений. Каркасные конструкции позволяли возводить дома в 40 и более этажей. Возможности металла как строительного материала эффектно продемонстрировала Эйфелева башня высотой в 305 м, возведенная в Париже к Всемирной выставке 1889 г. Во многих городах мира появились железнодорожные вокзалы, рынки и другие здания из металла и стекла. Одним из наиболее выдающихся сооружений подобного рода стало построенное в 1851 г. в Лондоне помещение для Всемирной выставки — Хрустальный дворец. Его длина составляла 564 и ширина 125 м, интерьер представлял один огромный зал без перегородок площадью 100 тыс. кв. м. Автор проекта Джозеф Пакетом предложил невиданную до этого архитектуру здания, возведенного полностью из стекла и металла. Но судьба этой уникальной постройки отразила все недостатки металлических строительных конструкций: подверженность коррозии и незащищенность от высоких температур. В 1936 г. Хрустальный дворец до основания уничтожил пожар. Широкое распространение в строительном деле получил цементный бетон. Он обладал многими достоинствами: прочностью на сжатие, долговечностью, устойчивостью против воды и огня, но не выдерживал нагрузок на растяжение. Этот недостаток сумел устранить Жозеф Моньеу садовник по профессии, который догадался каркас из железной проволоки залить цементным раствором и таким образом получить железобетон, ставший вскоре одним из основных строительных материалов.

Электросвязь

Интенсивное развитие средств связи улучшило передачу информации между континентами, странами и внутри них. После четырех неудачных попыток в 1866 г. проложили первый трансатлантический телеграфный кабель протяженностью 3240 км. Усилиями многих изобретателей совершенствовалась приемопередающая телеграфная аппаратура. Французский механик Жан Бодо на протяжении 1872—1876 гг. разработал конструкцию телеграфного аппарата, использовавшегося затем во многих странах. Стало возможным передавать более тысячи знаков в минуту. Успехом в 1876 г. завершилась работа Александра Грейама Белла по созданию телефона. Однако он обеспечивал слышимость лишь на небольшом расстоянии. Положение изменилось, когда Дэвид Эдуард Юз изобрел важнейшую часть телефонного аппарата — микрофон. Дальнейшая работа многих конструкторов была связана с улучшением телефонной аппаратуры, разработкой коммутационного оборудования. К концу первого десятилетия XX в. емкость многих городских телефонных сетей исчислялась десятками тысяч абонентов. После того как в 1887 г. Генрих Герц экспериментально показал возможность искусственного возбуждения электромагнитных волн, изобретатели получили научное обоснование идеи беспроводной связи. С начала 90-х гг. А.С. Попов вел разработку необходимых для беспроводной связи технических устройств, в 1896 г. неоднократно проводил сеансы связи без проводов, а в 1897 г. установил свою усовершенствованную аппаратуру на кораблях Балтийского флота, обеспечив радиопереговоры на расстоянии 5,5 км. Опыты аналогичного содержания проводил и Гульельмо Маркони. Его приборы в основном повторяли конструкцию аппаратов, разработанных Поповым, поэтому в ряде стран, кроме Англии и Италии, Маркони отказали в патентах, ссылаясь на работы Попова. Расстояния, на которые можно было передавать сигналы с помощью радио, быстро возрастали. В 1901 г. Маркони удалось установить радиосообщение между Англией и Ньюфаундлендом, расстояние между которыми 3,5 тыс. км. Интенсивные инженерные разработки привели к внедрению многих усовершенствований. В их числе было создание в 1904 т. Джоном Флемингом электронной лампы, что имело огромное значение для развития радиоэлектроники.

Полиграфия

Важные изобретения многократно умножили производительность книгопечатной техники. Созданная в 1863 г. Вильямом Буллоком принципиально новая ротационная печатная машина пропускала бумажную ленту между двумя цилиндрами, на одном из которых укреплялась печатная форма — стереотип. Это обеспечило непрерывность печатания. Уже первые образцы ротационной машины Буллока давали 15 тыс. оттисков в час, а в дальнейшем ее производительность была удвоена. Ускорился наборный процесс в связи с изобретением наборно-словолитных машин с клавиатурой, устроенной по принципу современной пишущей машинки. Одна из них была сконструирована в 1866 г. Оптаром Мергенталером и получила массовое распространение под названием «линотип» Он давал набор целыми строками. В 1867 г. появилась первая печатная машинка, которую сконструировал Кристофер Шолс. Она облегчила делопроизводство, служебную и личную переписку.



Лекция, реферат. Развитие морского транспорта, создание автомобиля, воздухоплавание, металлургия в эпоху Нового времени - понятие и виды. Классификация, сущность и особенности. 2018-2019.



« назад Оглавление вперед »
Население и урбанизация Европы в 19 веке « | » Развитие военной техники и военно-морского флота в конце 19 - начале 20 века






 

Похожие работы:

Воспользоваться поиском

 

Учебники по данной дисциплине

История отечества. Курс лекций
История. Справочник для подготовки к ЕГЭ
Цивилизации Древнего Востока
История нового времени
История России
История России с древних времён до начала 19 века
История Казахстана - экзаменационные билеты
История СССР
История отечества - полный курс лекций
История России 19-20 века
История Древних цивилизаций
История государственного управления в России
Отечественная история. Учебник
История нового времени. Лекции 2
История нового времени. Лекции 3
Российская империя во второй половине XIX
Российская империя в конце XIX - начале XX века
История России XVIII века
Российская империя во первой половине XIX
Источники отечественной истории государства и права кратко