⭐⭐⭐ Единый реферат-центр

Главная » Рефераты » Текст работы «Физиологическое значение лимфоцитов крови»


Физиологическое значение лимфоцитов крови

Органы иммунной системы и лимфоциты, их образование, развитие, функции и значение. Антигенпредставляющие клетки; межклеточные кооперации при развитии гуморального иммунологического ответа; нейропептидный, гормональный механизмы и пути его регуляции.

Дисциплина: Медицина
Вид работы: курсовая работа
Язык: русский
Дата добавления: 5.01.2016
Размер файла: 888 Kb
Просмотров: 6010
Загрузок: 32

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Физиологическое значение лимфоцитов крови (предмет: Медицина) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

Текст работыСкачать файл







Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Физиологическое значение лимфоцитов крови.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Медицина


Краткое описание документа: Физиологическое значение лимфоцитов крови курсовая работа по дисциплине Медицина. Понятие, сущность и виды, 2017.

Как скачать? | + Увеличить шрифт | - Уменьшить шрифт





курсовая работа по дисциплине Медицина на тему: Физиологическое значение лимфоцитов крови; понятие и виды, классификация и структура, 2015-2016, 2017 год.

40

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Московский государственный университет прикладной биотехнологии

Ветеринарно-санитарный факультет

Кафедра анатомии, физиологии и животноводства

Курсовая работа по физиологии

Тема:

Физиологическое значение лимфоцитов крови

Выполнила: студентка

2 курса 11 группы

Хоботова Юлия

Проверила: доц. Ванина Н.Н.

Москва 2006

Содержание

ВВЕДЕНИЕ

1. Основная часть

1.1 Органы иммунной системы и лимфоциты как клетки иммунной системы

1.2 Образование и развитие лимфоцитов

1.3 Функции и значение лимфоцитов

1.4 Взаимодействие клеток при разных формах иммунологического ответа

1.5 Регуляция иммунологического ответа

Заключение

Список литературы

ВВЕДЕНИЕ

Внешние и внутренние факторы меняют клеточные циклы здорового человека. В результате образуются аномальные (чужеродные, или синтезированные не так, как свои собственные) молекулы и клетки. Специальные клетки крови и других тканей продуцируют и поддерживают достаточную концентрацию фиксированных на клетках и свободных молекул, которые распознают, связывают (преобразуют) и выводят из организма аномальные молекулы и клетки.

Перераспределение частиц и клеток, "иммунного надзора" во все ткани организма происходит через крово- и лимфоток, а также транспорт через гистогематические барьеры.

Иммунитет (от лат. immunis) дословно означает свободный от чего- либо. Организм здорового человека непрерывно освобождается от веществ и структур, в том числе болезнетворных, как попадающих в него извне, так и образующихся внутри организма.

Источниками внешних (экзогенных) веществ и структур являются компоненты пищи, химические примеси воздуха и капельки жидкости, микроорганизмы, попадающие на кожу, в легкие, желудочно-кишечный тракт. Эндогенными (возникающими в самом организме) веществами, нарушающими постоянство внутренней среды и выводимыми с помощью иммунных механизмов, являются аномальные (мутантные) клетки и их компоненты, появившиеся при делении клеток, внутриклеточном синтезе веществ, метаболиты (шлаки) и др.

Тело человека состоит примерно из 1012-1013генотипически похожих клеток. Если принять, что при делении клеток каждая миллионная клетка подвергается мутации, то в любой момент в организме человека есть примерно 10 млн. аномальных клеток.

Благодаря иммунитету организм опознает, связывает, разрушает и выводит вещества и структуры. Вещества, отличающиеся по происхождению от собственных структур, называют чужеродными.

Иммунитет - способность специальных клеток жидкостей организма опознавать, связывать и удалять (выводить) вещества и структуры, происходящие из клеток других организмов или потерявших сходство с клетками собственного тела.

Таким образом, иммунитет поддерживает определенные (молекулярные) показатели гомеостаза и, значит, здоровья человека: динамическое равновесие количества удаляемых и восстанавливаемых клеток, тканей и жидкостей тела.

Эти показатели гомеостаза включают не только постоянство жидких сред организма, но и нормальную жизнедеятельность клеток- интенсивность митоза и мейоза, дифференцировку клеток, скорость образования клеточных клонов, продолжительность жизни клеток и др. Показатели гомеостаза, в том числе количество клеток каждого типа, как и размеры органов зависят от характера жизнедеятельности.

Иммунитет оценивается по иммунологической активности клеток различных тканей и органов, а также концентрации нефиксированных антител и способности их участвовать в иммунных реакциях, находящихся в жидкостях тела - крови, лимфе и межклеточной жидкости.

Клеточными компонентами иммунитета являются, прежде всего, лимфоциты, циркулирующие с током крови по всем органам и выполняющие главную роль "иммунного надзора" (патрулирования).

Именно поэтому я и решил написать курсовую работу по этой теме.

Органы иммунной системы и лимфоциты как клетки иммунной системы.

Центральными органами иммунной системы называют органы, где происходит формирование и созревание иммуноцитов. К ним относят костный мозг, вилочковую железу (тимус) и сумку Фабрициуса у птиц. Периферические органы иммунной системы содержат зрелые лимфоциты. Здесь после антигенного воздействия происходит их дальнейшая пролиферация и дифференцировка, продуцируются антитела и эффекторные лимфоциты. К периферическим органам относятся селезенка, лимфатические узлы, скопления лимфоидной ткани под слизистыми поверхностями желудочно-кишечного, дыхательного, мочеполового трактов (групповые лимфатические фолликулы, тонзиллы, пейеровы бляшки).

1. Основная часть

1.1 Органы иммунной системы и лимфоциты как клетки иммунной системы

Клетки иммунной системы (иммуноциты) могут быть разделены на три группы:

1. Иммунокомпетентные клетки, способные к специфическому ответу на действие антигенов. Этими свойствами обладают исключительно лимфоциты, каждый из которых изначально обладает рецепторами для какого-либо антигена.

2. Вспомогательные (антиген-представляющие) клетки, способные отличать собственные антигены от чужеродных и представлять их иммунокомпетентным клеткам, без чего невозможен иммунный ответ на большинство чужеродных антигенов

3. Клетки антиген-неспецифической защиты, отличающие компоненты собственного организма от чужеродных частиц, в первую очередь от микроорганизмов, и уничтожающих последние путем фагоцитоза или цитотоксического воздействия.

Лимфоциты сегодня считаются главными фигурами в иммунологическом надзоре. Это система клеток с различным функциональным предназначением. Уже в костном мозге предшественники лимфоцитов разделяются на две крупные ветви. Одна из них - у млекопитающих - завершает свое развитие в костном мозге, а у птиц в специализированном лимфоидном органе - бурсе (сумке), от латинского слова bursa. Отсюда эти лимфоциты получили название bursa-зависимые, или В-лимфоциты. Другая крупная ветвь предшественников из костного мозга переселяется в другой центральный орган лимфоидной системы - тимус. Эта ветвь лимфоцитов получила название тимус-зависимые, или Т-лимфоциты.

1.2 Образование и развитие лимфоцитов

Клетки, осуществляющие иммунологические функции, имеют общее происхождение, -- они являются производными полипотентной стволовой кроветворной клетки. Стволовые кроветворные клетки -- самоподдерживающаяся популяция мезенхимных клеток костного мозга. Они составляют менее 0,01% всех клеток костного мозга, но их роль исключительно велика: они являются родоначальниками всех клеток крови и клеток иммунной системы. Стволовые клетки полиморфны. 80-90% из них находится в Go фазе клеточного цикла, т.е. в состоянии покоя. Это обеспечивает относительную устойчивость популяции и широкие возможности мобилизации клеток для их дифференцировки. 10-20% стволовых клеток находятся в разных фазах деления. В результате митоза из них формируется два вида дочерних клеток. Одни сохраняют свойства родительских, оставаясь в популяции недифференцированных стволовых кроветворных клеток.

Другие дочерние клетки дифференцируются в клетки-предшественники лимфоцитов или миелоцитов. Первые в дальнейшем превращаются в В- или Т-лимфоциты, вторые дают начало гранулоцитам, макрофагам, эритроцитам и тромбоцитам. Направление и интенсивность дифференцировки клеток регулируются гуморальными факторами -- цитокинами, гормонами, гормоноподобными веществами, что обеспечивает потребность организма в тех или иных клетках. В ходе дифференцировки клетки покидают костный мозг, распределяются по органам и тканям и лишь часть из них завершают дифференцировку на месте.

Лимфоциты. Лимфоциты, как и другие клетки иммунной системы, являются производными полипотентной стволовой клетки костного мозга. В результате пролиферации и дифференцировки стволовых клеток формируются две основные группы лимфоцитов, именуемые В- и Т-лимфоцитами, которые морфологически не отличимы друг от друга. В ходе дифференцировки лимфоциты приобретают рецепторный аппарат, определяющий их способность взаимодействовать с другими клетками организма и отвечать на антигенные воздействия, формировать клоны клеток -- потомков, реализующих конечный эффект иммунологической реакции (образование антител или цитолитических лимфоцитов).

Направление

=>

=>

=>

=>

^

®

Этапы созревания

Стволовая клетка

Пре- Т-лимфоцит

Незрелый Т-лимфоцит

Зрелый Т-лимфоцит

Активированный Т-лимфоцит

Эффектор-ная клетка

Функция

Предок всех клеток

Предок Т-клеток

Толерогенез

Ожидание антигена

Начало клеточной реакции

Клеточная реакция

Местонахождение

Костный мозг

Тимус

Тимус

Периферические органы

Органы и ткани

Органы и ткани

Роль антигена

Роли не играет

Роли не играет

Толероген

Иммуноген

Иммуноген

Мишень

Рецепторы для антигена

Отсутствуют

Отсутствуют

ТКР для всех антигенов

ТКР ля чужеродных антигенов

ТКР для чужеродных антигенов

ТКР для чужеродных антигенов

Этапы созревания и дифференцировки Т-лимфоцитов

Созревание и дифференцировка лимфоцитов проходят в два этапа. Первый этап -- развитие от стволовой клетки до зрелого лимфоцита, способного вступать в контакт с антигеном называемого антиген-реактивной клеткой (АРК). Созревание лимфоцита на этом этапе не зависит от воздействия антигена, рецепторы к которому формируются только при завершении созревания. Второй этап осуществляется в том случае, если лимфоцит вступил в контакт с антигеном, рецепторами для которого он обладает. Антиген индуцирует в АРК цепь внутриклеточных событий, начинающихся с активации внутриклеточной протеинкиназы и мобилизации из митохондрий в цитозоль внутриклеточного Са2+. Действие протеинкиназы и Са2+ разнонаправленно: протеинкиназа индуцирует дальнейшую пролиферацию клетки, деление, формирование клона, Са2+ -- тормозит или прекращает этот процесс, активирует эндонуклеазы лимфоцита, разрушающие ДНК и приводящие клетки к апоптозу (физиологической гибели). В зрелых лимфоцитах второй механизм, способствующий развитию иммунологической толерантности, репрессирован и происходит дальнейшее развитие клеток, обуславливающих формирование позитивного иммунного ответа.

1.3 Функции и значение лимфоцитов

Морфологически лимфоцит -- клетка шаровидной формы с большим ядром и узким слоем базофильной цитоплазмы. В процессе дифференцировки последовательно формируются большие, средние и малые лимфоциты. В лимфе и периферической крови большинство составляют наиболее зрелые малые лимфоциты, которые обладают амебоидной подвижностью. Они постоянно перемещаются с током лимфы или крови, накапливаясь в лимфоидных органах и тканях, где осуществляются иммунологические реакции. Две основные популяции лимфоцитов Т- и В-клетки при световой микроскопии не различаются, но четко дифференцируются по поверхностным структурам и функциональным свойствам. Их сравнительные характеристики представлены в таблице.

Основные функциональные отличия Т- и В-лимфоцитов состоят в том, что В-лимфоциты осуществляют гуморальный иммунный ответ, а Т-лимфоциты -- клеточный, а также участвуют в регуляции обеих форм иммунного ответа.

Т-лимфоциты получили обозначение потому, что созревают и дифференцируются в тимусе. Они составляют около 80% всех лимфоцитов крови и лимфатических узлов, содержатся во всех тканях организма. Они осуществляют две основные функции -- регуляторную и эффекторную. Регуляторные клетки обеспечивают развитие иммунного ответа другими клетками, регулируют его дальнейшее течение. Эффекторные Т-лимфоциты осуществляют эффект иммунологической реакции чаще всего в форме цитолиза клеточных структур, к антигенам которых возникла иммунологическая реакция.

Сравнительная характеристика Т- и В-лимфоцитов

Лимфоциты

Т-лимфоциты

В-лимфоциты

Происхождение

Костный мозг

Костный мозг

Созревание

Тимус

Костный мозг

Содержание в крови

65-80 %

10-15 %

Рецептор для антигена

Протеиновый гетеродимер, ассоциированный с CD3, CD4, CD8

Молекула иммуноглобулина

Митогены, стимулирующие клетки

Фитогемагглютинин, конканавалин А, анти-Т-антитела

Липополисахариды, антиглобулиновые антитела

Участие в гуморальном ответе: индукция антител продукция антител

-и +

+ +

Участие в клеточных реакциях

+

-

Клетки памяти

Т-лимфоциты памяти

В-лимфоциты памяти

CD-антигены

CD-2, 3, 4 или 8, 5, 7, 28

CD- 19, 2 1,22, 23, 24, 37

Все Т-лимфоциты обладают поверхностными молекулами CD2 и CD3, определяющими ряд функций этих клеток и служащими маркерами для выявления их с помощью моноклональных антител или Другими способами. Кроме того, СD2-молекулы адгезии обуславливают контакт Т-лимфоцитов с другими клетками. Эту способность использовали для выявления данных лимфоцитов с помощью эритроцитов барана, которые способны in vitro прилипать к поверхности лимфоцитов, образуя «розетки», хорошо видимые при микроскопии. Молекулы CD3 входят в состав рецепторов лимфоцита. Для антигенов, определяя способность клеток к контакту со специфическим антигеном. На поверхности каждого Т-лимфоцита имеется несколько сотен таких молекул. Существуют два варианта CD3 рецепторов Т-лимфоцитов для антигенов: альфа/бета и гамма/дельта. Лимфоциты с рецепторами альфа/бета составляют не менее 90% всех лимфоцитов человека. Они содержатся в большей концентрации в крови, лимфоузлах, селезенке, обладают широким диапазоном специфичности, позволяющим распознавать любые антигены, а также выраженной хелперной и цитотоксической активностью. Гамма/дельта-лимфоциты содержатся в кишечном эпителии, брюшине, репродуктивных органах, коже. Они способны распознать меньшее число антигенов, чем альфа/бета -лимфоциты, не имеют СD4-антигена, обладают цитотоксическими свойствами и более, чем в половине случаев относятся к CD8+ клеткам. Поскольку эти лимфоциты содержатся в коже и слизистых структурах они относятся к компонентам первой линии защиты организма от патогенов. Несмотря на сравнительно ограниченную возможности антигенного распознавания, гамма/дельта - лимфоциты быстро реагируют на углеводные компоненты микроорганизмов, стрессовые белки, образуют гамма-интерферон, активирующий макрофаги и обладающий противовирусными свойствами, гамма/дельта -лимфоциты кишечника способствуют толерантности организма к антигенам, содержащимся в пище.

Как уже было отмечено, созревающие в тимусе Т-лимфоциты дифференцируются на две популяции, маркерами которых служат поверхностные антигены CD4 и CD8. Первые составляют более половины всех лимфоцитов крови и через продуцируемые лимфокины стимулируют другие клетки иммунной системы. Поэтому их назвали клетками-хелперами (англ. Help -- помощь), которые относятся к основным клеткам иммунной системы, осуществляющих иммунные реакции. Без их помощи не может реализоваться большинство функций В-лимфоцитов.

Иммунологические функции СD4+-лимфоцитов начинаются с представления им антигена антигенпредставляющими клетками (АПК). Представление состоит в том, что АПК, распознавшая антиген как чужеродный субстрат, входит в контакт с лимфоцитом. Рецепторы последнего воспринимают антиген только в том случае, если одновременно на поверхности АПК находится и собственный антиген этой клетки.

Сравнительная характеристика лимфоцитов Тх1 и Тх2

Т-лимфоциты

Txl

Тх2

Индуцирующие антигены

Антигены внутриклеточных микроорганизмов (микобак-терии, листерии, вирусы)

Аллергены, антигены гельминтов, белковые антигены

днтигенпредстав-ляющие клетки

Дендритные клетки, макрофаги

В-лимфоциты, макрофаги, дендритные клетки

Способствующие факторы

ИЛ- 12, CD80

ИЛ-1,С086

Образуемые

ЦИТОКИНЫ

ИЛ-2, ИЛ- 12, у ИФ, а-ФНО

ИЛ-4, ИЛ-5.ИЛ-6, ИЛ-10, ИЛ- 13

Формируемые реакции

Клеточные реакции, противовирусный иммунитет, аутоиммунные реакции

Гуморальный иммунитет, аллергические реакции, иммунитет против паразитов

Подавляемые реакции

Гуморальные реакции

Клеточные реакции

Обозначение: ИФ -- интерферон; ФИО -- фактор некроза опухолей

Таким антигеном для стимуляции СD4+ лимфоцита должен быть антиген главного комплекса тканевой совместимости (МНС) II класса. Такое «двойное распознавание» служит Дополнительной гарантией, что лимфоцит не будет активирован одним из собственных антигенов организма, что может привести к развитию аутоиммунной реакции.

Лимфоциты-хелперы (Тх, CD4+) после воздействия антигена пролиферируют и разделяются на две субпопуляции: Txl и Тх2. Образование Txl стимулируют преимущественно антигены внутриклеточных паразитов (микобактерии, листерии). Дифференцировке Т-хелперов в Тх2 способствуют аллергены, антигены гельминтов. Большинство белковых антигенов стимулируют образование клеток обеих субпопуляций -- Txl и Тх2. Формированию Тх1 способствуют также интерлейкин ИЛ-12 и гликопротеин CD80, образуемый активированными макрофагами. Формированию Тх2 способствуют ИЛ-1 и гликопротеин CD86, образуемый антигенпредставляющими В-лимфоцитами.

Основные отличия субпопуляций состоят в спектре продуцируемых ими интерлейкинов. Интерлейкины, продуцирумые Txl, обуславливают формирование преимущественно клеточных иммунных реакций и воспаления. Интерлейкины -- продукты Тх2 лимфоцитов способствуют формированию гуморальных форм иммунного ответа. Поскольку интерлейкины могут обладать антагонистическим действием, Txl-лимфоциты и их продукты оказывают супрессорное действие на реакции, связанные с активностью Тх2, и наоборот, Тх2-лимфоциты подавляют реакции, связанные с Txl-клетками Этим объясняется давно известный антагонизм клеточных и гуморальных иммунологических реакций, причем стимуляция и подавление разных форм иммунного ответа могут быть связаны с балансом активности двух групп Т-лимфоцитов. В крови и лимфоидных органах содержатся лимфоциты-хелперы, обозначаемые Тх0. Они формируются на первых этапах воздействия антигена на СD4+-лимфоциты. Тх0 продуцируют лимфокины, присущие как Txl, так и Тх2-клеткам, а далее дифференцируются в Txl либо в Тх2-лимфоциты.

В ходе пролиферации Txl и Тх2-лимфоцитов часть из них формирует клетки иммунологической памяти, которые длительно сохраняются в организме обеспечивая быстрый и сильный ответ на повторное действие антигена. Txl-лимфоциты могут дифференцироваться в эффекторные цитотоксические клетки, реализующие реакции клеточного иммунитета.

СD8+-лимфоциты -- основные клетки, оказывающие цитотокси-ческое действие. Они составляют 22-24% всех лимфоцитов крови и их соотношение с СD4+-лимфоцитами равны 1:1,9-1:2,4. Обе эти разновидности Т-лимфоцитов дифференцируются из общих предшественников в мозговом слое тимуса и обладают одинаковыми рецепторами для антигенов, с той лишь разницей, что рецептор СD4+-лимфоцита воспринимает антиген от представляющей клетки в комплексе с антигеном МНС II класса, а рецептор СD8+-лимфоцита в комплексе с антигеном МНС I класса. Поскольку антигены МНС (главного комплекса тканевой совместимости) II класса имеются лишь на АПК, а антигены I класса практически на всех клетках, СD8+-лимфоциты вступают во взаимодействие с любыми клетками организма. Основной функцией СD8+-лимфоцитов является цитотоксичность, вследствие чего они играют ведущую роль в противовирусном, противоопухолевом и трансплантационном иммунитете. Вместе с тем, СВ8+-лимфоциты могут играть роль супрессорных клеток, подавляющих активность других клеток иммунной системы. При этом в последнее время установлено, что супрессорный эффект свойствен многим видам клеток. Поэтому СD8+-клетки перестали называть супрессорными клетками, и они получили название цитотоксических, несмотря на то, что цитотоксическими свойствами могут обладать и СD4+-лимфоциты. Цитотоксические свойства СD8+-лимфоциты приобретают в ходе дифференцировки после контакта с антигеном. Этому способствует интерлейкин ИЛ-2, секретируемый Txl-лимфоцитами. В результате активации синтеза ДНК и митозов формируется два вида СD8+-лимфоцитов -- клетки памяти и цитотоксические лимфоциты (ЦТЛ). Цитотоксическое действие начинается с контакта ЦТЛ с клеткой-«мишенью» и последующего поступления в мембрану клетки белков -- перфоринов или цитолизинов. Перфорины полимеризуются и создают в наружной мембране клетки-«мишени» отверстия диаметром 5-16 нм, через которые проникают ферменты группы сериновых эстераз, называемые гранзимами. Гранзимы и другие ферменты лимфоцита наносят клетке-«мишени» «летальный удар», вызывая гибель путем апоптоза. Апоптоз возникает вследствие того, что гранзимы вызывают резкий подъем внутриклеточного уровня Са2+, активацию внутриклеточных эндонуклеаз и разрушение ДНК клетки. Лимфоцит после этого сохраняет способность индуцировать гибель других клеток.

Существует и другой механизм деструкции клеток, обусловленный возможностью контакта гликопротеина CD95 (АРО-1), находящегося на поверхности многих клеток организма, с трансмембранным белком, CD95L, экпрессированным на активированных СВ8+-лимфоцитах. Этот белок, близкий по структуре и действию к лимфотоксину, вызывает апоптоз клеток-«мишеней». Механизм апоптоза через контакт лимфоцита с белком CD95 на поверхности клеток-«мишеней» характерен для нормального функционирования иммунной системы и негативной селекции потенциально-аутореактивных клеток.

К цитотоксическим лимфоцитам по происхождению и функциям близки естественные киллеры (ЕК), которые имеют общих предков-предшественников с Т-лимфоцитами. При этом ЕК не попадают в тимус и не подвергаются дифференцировке и селекции. Эти лимфоциты не имеют рецепторов для антигенов и поэтому не участвуют в специфических реакциях приобретенного иммунитета. ЕК относятся к системе естественного иммунитета и разрушают в организме любые клетки, зараженные вирусами, а также опухолевые клетки. В отличие от цитотоксических Т-лимфоцитов, формирующихся и проявляющих свое действие в организме только после антигенной стимуляции, ЕК всегда готовы к контакту с мишенями и цитотоксическому Действию. Механизмы их цитотоксического действия сходны с действием Т-цитотоксических лимфоцитов, индуцирующих апоптоз клеток-«мишеней» посредством перфоринов, гранзимов и других активных субстратов. Для лабораторного выявления ЕК по функциональной активности применяют цитотоксический тест с использованием в качестве мишеней клеток перевиваемой линии К562. Маркерами ЕК человека служат поверхностные антигены CD56, CD16. Кроме того, ЕК обладают антигеном CD2, свойственным большинству клеток лимфоидного ряда и определяющим адгезивные свойства клеток. Многие микроорганизмы индуцируют продукцию ИЛ-12 мононуклеарными клетками крови и тем самым активируют защитные функции ЕК.

Сами ЕК продуцируют цитокины, активирующие другие клетки иммунной системы, повышая общий уровень защитных реакций.

Мембранный белок CD 16, обладающий свойствами рецептора для иммуноглобулина G, определяет участие ЕК в реакциях антителозависимой клеточной цитотоксичности.

Антитела к возбудителям инфекции, антигенам трансплантатов и антигенам собственных клеток обеспечивают контакт ЕК, сорбировавших эти антитела с клетками, обладающими соответствующими антигенами. В этих случаях ЕК участвуют в осуществлении специфических иммунных реакций.

В-лимфоциты составляют вторую основную популяцию лимфоцитов. Эти клетки составляют 10-15% лимфоцитов крови, 20-25% клеток лимфатических узлов. В-лимфоциты выполняют в организме две роли: обеспечивают продукцию антител и участвуют в представлении антигенов Т-лимфоцитам.

В-лимфоциты обладают поверхностными рецепторами для антигенов, представляющих собой молекулы иммуноглобулинов, чаше всего классов D и М, фиксированные на их наружной мембране. На поверхности одного В-лимфоцита находится 200-500 тыс. молекул одинаковой специфичности. Отделившиеся от В-лимфоцита иммуноглобулиновые рецепторы циркулируют в организме как свободные антитела.

В-лимфоцит происходит от стволовой кроветворной клетки, проходит созревание в костном мозге, где на его поверхности формируются иммуноглобулиновые рецепторы для антигенов. На каждом лимфоците формируются рецепторы только для одного антигена. Созревающий лимфоцит покидает костный мозг и становится антиген-реактивной клеткой, т.е. клеткой, способной к взаимодействию с одним из многочисленных антигенов, существующих в природе. В отличие от Т-лимфоцита, который может взаимодействовать с антигеном только после его представления антиген-представляющей клеткой, В-лимфоцит вступает в контакт с антигеном напрямую, без посредников. Контакт с антигеном может служить стимулом для пролиферации и дифференцировки В-лимфоцита с последующим формированием клона однородных клеток-потомков, конечной стадией развития которых являются плазматические клетки, оптимально адаптированные к продукции больших количеств антител. Эволюция В-лимфоцита после контакта с антигеном может идти Т-зависимым либо Т-независимым путем.

Т-зависимый путь, характерный для ответа на большинство антигенов, осуществляется с помощью цитокинов, продуцируемых Т-хелперными лимфоцитами (CD4+). При воздействии антигена одновременно с В-лимфоцитами активируются и Т-хелперы (Тх). Тх продуцируют ИЛ-2, стимулирующий пролиферацию В-лимфоцитов и их первое деление.

ИЛ-2 и другие Т-клеточные цитокины -- ИЛ-4, ИЛ-5 способствуют дальнейшему развитию В-популяции вплоть до формирования конечных плазматических клеток -- продуцентов основной массы иммуноглобулинов. Одновременно формируются В-лимфоциты памяти, обеспечивающие быстрый и сильный ответ на повторное воздействие антигена. В ходе продукции иммуноглобулинов цитокины способствуют переключению синтеза иммуноглобулинов с IgM, характерных для ранних этапов гуморального ответа, на другие классы. ИЛ-4, ИЛ-6, ИЛ-2, уИФ способствуют переключению синтеза Ig на IgG, ИЛ-5, р-ТГФ -- на IgA, ИЛ-4 -- на IgE.

Второй путь формирования иммунного ответа В-лимфоцитами, Т-независимый, осуществляется без помощи Т-лимфоцитов и индуцируется некоторыми небелковыми, в том числе микробными, антигенами. Т-независимые антигены обладают митогенным действием и способствуют формированию клона клеток продуцирующих IgM антитела. Т-независимый путь иммунною ответа более примитивен и менее эффективен, так как не сопровождается формированием иммунологической памяти и при нем нe происходит переключение синтеза антител с IgM на другие классы иммуноглобулинов.

Плазматическая клетка -- результат конечной дифференциация В-лимфоцита -- относится к короткоживущим клеткам. Плазмациты не имеют на наружной мембране рецепторов для антигена. Они конечный продукт дифференцировки В-лимфоцитов. Интенсивность синтеза иммуноглобулинов одной плазматической клеткой достигает 1 млн. молекул в час. После завершения фазы активной продукции антител плазмациты прекращают свое существование.

Длительная продукция умеренных количеств антител, наблюдаемая после иммунизации или инфекционного заболевания, осуществляется одной из разновидностей В-лимфоцитов памяти. Они формируются в ходе иммунного ответа на антиген, составляют около 1% всех В-лимфоцитов, отличаются долголетием и способностью быстро отвечать на повторное поступление антигена. В-лимфоциты памяти не имеют морфологических отличий от других В-лимфоцитов, но обладают активным геном (bcl-2). Продукты этого гена обеспечивают устойчивость клеток к апоптозу, и они сохраняются в организме в течение многих лет. В-клетки памяти рециркулируют между кровью, лимфой и лимфоидными органами, но более всего накапливаются в периферических лимфоидных органах.

Антиген представляющие клетки (АПК)

Начальным этапом Т-клеточного иммунного ответа является представление антигена Т-лимфоцитам. Антигенный рецептор СD4+ Т-хелпера воспринимает антиген в комплексе с продуктом гена МНС II класса, который должен находиться на поверхности АПК. Следовательно, роль АПК может играть любая клетка организма, обладающая антигеном МНС II класса и способностью сорбировать на своей поверхности чужеродный антиген. В организме человека антигенами МНС II класса обладают немногие клетки: макрофаги, дендритные клетки, В-лимфоциты, а также клетки Лангерганса и кератиноциты кожи, эндотелиальные клетки сосудов и гломерул почек. Макрофаги, дендритные клетки и В-лимфоциты называют профессиональными АПК, так как они более мобильны, активны и выполняют основной объем функций представления антигенов.

АПК имеет на наружной мембране до 2 * 105 молекул МНС II класса. Для активации одного Т-лимфоцита достаточно 200-300 таких молекул, находящихся в комплексе с антигеном.

Макрофаги -- клетки системы мононуклеарных фагоцитов происходят от монобластов костного мозга, Которые дифференцируются в моноциты крови. Моноциты, составляющие около 5% лейкоцитов крови, находятся в циркуляции около 1 сут., а затем поступают в ткани, формируя популяцию тканевых макрофагов, количество которых в 25 больше, чем моноцитов. К ним относятся купферовские клетки печени, микроглия центральной нервной системы, остеокласты костной ткани, макрофаги легочных альвеол, кожи и других тканей. Много макрофагов во всех органах иммунной системы. Тканевые макрофаги -- клетки с округлым или почковидным ядром имеют диаметр 40-50 мкм. Цитоплазма содержит лизосомы с набором гидролитических ферментов, обеспечивающих переваривание любых органических веществ и выделение бактерицидного аниона кислорода. Макрофаги функционируют как фагоциты. Они продуцируют растворимые вещества, регулирующие другие клетки иммунной системы, из которых наиболее изучен ИЛ-1, активирующий лимфоциты. На мембране макрофага экспрессированы структуры, обеспечивающие способность отличать чужеродные субстраты от собственных. Маркер макрофага -- белок СОН служит рецептором липополисахаридов бактерий. Макрофаг обладает пектиноподобными молекулами, соединяющимися с маннозными и фруктозными компонентами поверхности большинства микроорганизмов, что обеспечивает их контакты, лежащие в основе фагоцитоза.

Участие макрофага в иммунном ответе состоит в том, что эта клетка фагоцитирует антиген-содержащие частицы, дезинтегрирует их, превращая белки в антигенные пептидные фрагменты. Последние в комплексе с собственными антигенами МНС II класса макрофаг передает Т-лимфоциту при прямом контакте с ним. При этом макрофаг продуцирует лимфокин ИЛ-1, который вызывает пролиферацию лимфоцитов, вступивших в контакт с антигенов что обеспечивает формирование клона этих клеток, осуществляющий развитие иммунологической реакции на антиген.

Дендритные клетки составляют вторую группу АПК. Они близки к макрофагам, но не обладают фагоцитирующими свойствами. Э способствует сохранности поглощенных антигенов, которые могут быть полностью разрушены в ходе фагоцитоза. Дендритные клетки содержатся в крови, лимфе и во всех других тканях. Дендритные клетки эпителиальных тканей называют клетками Лангерганса, в лимфатических узлах и селезенке они составляют около 1 % всех клетов. Эти отростчатые мононуклеарные клетки в разных тканях имеют ней одинаковую форму и даже названия, однако все они обладают молекулами МНС II класса и способностью фиксировать антигены с формированием комплекса антиген-продукт МНС, представляемого Т-лимфоцитам. Дендритные клетки значительно более активны, чем макрофаги и В-клетки в индукции первичного иммунного ответа: в отличие от других АПК дендритные клетки могут представлять антиген покоящимся Т-лимфоцитам. Захват антигена дендритными клетками чаще всего происходит вне лимфоидных органов. После этого они мигрируют в лимфоидные образования, где происходит их контакт с Т-лимфоцитами и развитие дальнейших событий иммунного ответа. Этому способствуют стимулирующие воздействия на лимфоцит через контакт молекул В7-1 и ИЛ-2, экспрессированных на поверхности дендритных клеток, с молекулами CD40, находящимися на поверхности Т-лимфоцита. Дендритные клетки, как и большинство других клеток человека, обладают антигеном МНС I класса, необходимого для представления антигена CD8+ цитотоксическому Т-лимфоциту. Поэтому они являются также инициаторами цитотоксических реакций.

В-лимфоциты как антиген представляющие клетки (АПК). Как уже указывалось, В-лимфоциты обуславливают формирование иммуноглобулинов и действуют как АПК. Особенности В-лимфоцитов как АПК состоят в том, что эти клетки вступают в контакт с антигеном через свои специфические рецепторы. Следовательно, в представлении антигена участвуют не все В-лимфоциты, а только те, которые обладают рецепторами к данному антигену. Поступивший в организм антиген распределяется среди относительно небольшого числа высокочувствительных к нему АПК. Вследствие этого для индукции иммунного ответа требуется в 10 тыс. раз меньше антигена, чем при его представлении другими видами АПК. Поэтому при небольших количествах антигена В-лимфоциты являются монопольными АПК. Процесс присоединения антигена к В-лимфоциту длится несколько минут, после чего антиген подвергается эндоцитозу, а через несколько часов вновь экспрессируется на мембране клетки в комплексе с молекулами МНС II класса. Далее В-лимфоцит вступает в прямой контакт с Т-клеткой и служит сигналом ее активации. Контакту и активации клеток способствуют дополнительные молекулы на их поверхности, а также продуцируемые ими цитокины.

Другие антиген представляющие клетки. Помимо макрофагов дендритных и В-клеток для которых представление антигенов входит в число основных функций (профессиональные АПК), в представлении антигенов Т-хелперным лимфоцитам могут принимать участие эндотелиальные клетки, фибробласты, астроциты, клетки микроглии, кератиноциты и некоторые другие, которые при активации способны экспрессировать молекулы МНС II класса и цитокины, активирующие Т-лимфоциты. Так, например, кератиноциты кожи способна воспринять антиген, продуцировать ИЛ-1 и после стимуляции интерфероном экпрессировать молекулы МНС II класса. Контакт этих клеток с Т-лимфоцитами и их стимуляция -- элементы патогенеза контактного дерматита, псориаза.

Представление антигена СD8+(цитотоксическим) лимфоцитам осуществляется через формирование антиген-представляющей клети кой комплекса антигена с белком МНС I класса. Таким белком обладают практически все ядерные клетки организма, что значительно расширяет возможности активации цитотоксических реакций, играющих основную роль в противовирусном, противоопухолевом и трансплантационном иммунитете.

1.4 Взаимодействие (кооперация) клеток при разных формах иммунного ответа

Как следует из вышеизложенного, Т-лимфоциты реализуют клеточные формы иммунного ответа, В-лимфоциты обуславливают гуморальный ответ. При этом обе формы иммунологических реакций не могут состояться баз участия вспомогательных клеток, которые в дополнение к сигналу, получаемому антигенреактивными клетками от антигена, формируют второй, неспецифический, сигнал, без которого Т-лимфоцит не воспринимает антигенное воздействие, а В-лимфоцит не способен к пролиферации.

Клеточное взаимодействие при возникновении Т-клеточного .иммунного ответа состоит в том, что антиген может воздействовать на клетку только после его представления антиген-представляющей клеткой (АПК). АПК производит предварительный отбор антигена, вступая BQ взаимодействие только с чужеродными антигенными субстратами, исключая, тем самым, возможность действия на лимфоцит собственных антигенов организма. Антиген сорбируется на поверхности АПК, затем подвергается эндоцитозу, в результате чего антиген фрагментируется и формирует комплекс с собственным белком клетки -- продуктом гена МНС, антигеном главного комплекса тканевой совместимости.

Комплекс антиген -- белок МНС экспрессируется на поверхности АПК и становится доступным к контакту с рецептором Т-лимфо цита. Контакт осуществляется при прямом взаимодействии клеток либо передаче комплекса через межклеточную среду. Рецептор Т-лимфоцита построен так, что воспринимает одновременно оба компонента комплекса. Воздействие на Т-клеток антигенного комплекса служит сигналом активации внутриклеточных процессов, продукции клеткой цитокинов и экспрессии на ней цитокиновых рецепторов. Основой внутриклеточных событий служит активация протеинкиназы С, обуславливающей стимуляцию генома клетки, начало пролиферации и дальнейшей дифференцировки с формированием клона клеток одинаковой специфичности, составляющих основу дальнейшего развития иммунного ответа. Одновременно с формированием протеинкиназы в цитозоле происходит повышение уровня свободного Са2+, активирующего эндонуклеазы клетки, что может привести к апоптозу -- гибели клетки. Баланс этих антагонистических процессов определяет альтернативу возникновения позитивного иммунного ответа или толерантности.

Цитокины ИЛ-1, ИЛ-2, ИЛ-4, продуцируемые АПК и лимфоцитами, способствуют активации протеинкиназы и связанных с ней процессов пролиферации клеток. Другая группа цитокинов -- у-интерферон, простагландин Е, ИЛ-6 (продукты Т-лимфоцитов, мононуклеарных и других клеток) -- способствует развитию апоптоза. В зрелых лимфоцитах взрослого организма приоритетна первая группа реакций, в организме плода -- преобладают процессы развития апоптоза в аутореактивных лимфоцитах, что обеспечивает формирование толерантности к собственным антигенам.

Т-лимфоциты-хелперы (CD4+) и цитотоксические Т-лимфоциты (CD8+) отличаются по строению рецепторов, воспринимающих комплексы антиген-белок МНС. В первом случае комплекс должен содержать белок МНС II класса, представляемый только некоторыми видами АПК-дендритными и В-клетками и макрофагами. Для симуляции CD8+ лимфоцитов необходим белок МНС I класса, которым обладают все ядерные клетки организма и, следовательно, круг АРК для этих лимфоцитов существенно расширен. В ходе дальнейшей пролиферации и дифференцировки активированных Т-лимфоцитов формируются регуляторные клетки (хелперы, цитотоксические и супрессорные), долгоживущие клетки памяти и эффекторные клетки, которые обладают выраженной цитотоксической способностью. В случае повторного поступления антигена его представление происходит так же, как и при первичном воздействии, но попадает уже на клетки иммунологической памяти, число которых больше, чем число АРК в организме, впервые встречающегося с антигеном. Эти клетки уже прошли ранние стадии созревания и дифференцировки и готовы к быстрому формированию эффекторных цитотоксических клеток. Формирование гуморального ответа определяется кооперацией В-лимфоцитов с другими клетками иммунной системы и в первую очередь с Т-лимфоцитами-хелперами, в стимуляции которых принимают участие и сами

В-лимфоциты.

Межклеточные кооперации при развитии клеточного и гуморального иммунного ответа:

1 -- антиген; 1А -- фрагмент антигена (эпитоп), представляемый Т-лимфоциту АПК (макрофагом или дендритной клеткой); 1Б -- фрагмент антигена (эпитоп), представляемый Т-лимфоциту В-лимфоцитом, играющим роль АПК; 2 -- белок антигенпредставляющей клетки (гистопоп) -- антиген МНС II класса; 3 -- рецептор Т-лимфоцита (паратоп), воспринимающий двойной сигнал от АПК; 4 -- рецептор В-лимфоцита (паратоп), взаимодействующий с антигеном; 5 -- цитокины, активирующие Т-лимфоцит; 6 -- цитокины, активирующие АПК и В-лимфоцит; 7 -- последующая пролиферация и дифференцировка лимфоцитов, стимулированных антигеном с формированием клона клеток-потомков; АПК -- антигенпредставляющая клетка; Т -- Т-лимфоцит; В -- В-лимфоцит.

В-лимфоцит воспринимает антиген путем прямого контакта рецепторов с антигеном. Антиген проходит тот же путь, что и в любой другой АПК: подвергается эндоцитозу, фрагментируется и экспрессируется на поверхности В-клетки в комплексе с белком МНС II класса. Этот комплекс воспринимается рецептором Т-лимфоцита и служит сигналом развития Т-клеточного ответа, так же как после стимуляции через другие АПК. Одновременно Т-лимфоциты начинают функционировать как хелперы, продуцируя лимфокины (ИЛ-2, -4, -5), обеспечивающие способность В-клетки, поглотившей антиген, пролиферировать и дать начало клону антителообразующих клеток, продуцирующих Ig (Т-зависимый ответ). Как уже отмечалось, содружество группы цитокинов -- ИЛ-6, ИЛ-4, ИЛ-2 и у-интерферона -- способствуют переключению синтеза IgM антител на IgG. Преобладающее действие ИЛ-5 и трансформирующего фактора роста-р приводит к формированию антител класса IgA, а преобладающее действие ИЛ-4 переключает синтез иммуноглобулинов на IgE.

Некоторые антигены (полисахариды, гликолипиды, нуклеиновые кислоты) способны индуцировать иммунный ответ без помощи лимфоцитов-хелперов, за что получили название Т-независимых антигенов. К таким антигенам относится полисахаридный антиген пневмококков и некоторых других микроорганизмов, флагеллин, декстраны.

Характер иммунного ответа на Т-независимые антигены подчеркивает значение кооперации с Т-хелперами при гуморальном иммунном ответе. При осуществлении Т-независимого ответа продуцируются низкоаффинные (непрочно связывающиеся с антигеном) антитела только класса IgM. Эффективность Т-независимого ответа во много раз ниже, чем тимусзависимых реакций.

Межклеточная кооперация входит в число механизмов специфической регуляции иммунного ответа в организме. В ней принимают участие специфические взаимодействия между конкретными антигенами и соответствующими им структурами антител и клеточных рецепторов.

1.5 Регуляция иммунологического ответа

Иммунный ответ организма - процесс высоко специфический, однако его интенсивность неспецифически регулируется нейрогуморальным способом.

На современном этапе исследований нейрогуморальной регуляции происходит анализ ее механизмов, изучаются возможные мишени нейрогуморальных воздействий, нервные и гуморальные компоненты их передачи, причем в последние годы арсенал гуморальных факторов, участвующих в реализации связи между нервной и иммунной системами существенно увеличился, что обусловлено обнаружением роли в этом процессе регуляторных пептидов.

В целостном организме работа иммунной системы коррегируется мозгом. К структурам мозга, модулирующим интенсивность иммунного ответа относят такие зоны, как заднее гипоталамическое поле, переднее гипоталамическое поле, гиппокамп, ретикулярная формация среднего мозга, ядра шва, миндалины.

Вегетативная нервная система, ее симпатический и парасимпатический отделы, может участвовать в реализации центрально обусловленных изменений интенсивности иммунных реакций. Эта передача, по-видимому, может осуществляться через нейромедиаторы, которые воспринимаются рецепторами, расположенными на лимфоидных клетках, и через систему вторичных передатчиков - циклических нуклеотидов - изменяют метаболизм и функциональную активность лимфоцитов.

Центральная модуляция функций иммунной системы может осуществляться, разумеется, и через эндокринную систему, т.е. посредством центрально обусловленных изменений уровня различных гормонов в крови.

Пути и механизмы регуляции иммунного ответа

Гормональные, нервные и нервнопептидные пути относят к основным способам передачи модулирующих сигналов от головного мозга к иммунной системе. Нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов.

Каковы же их пути воздействия на иммунные клетки? Известно, что как строма, так и паренхима лимфоидных органов снабжена нервами симпатической и парасимпатической системы. Нейромедиаторы и нейропептиды достигают органов иммунной системы с помощью аксоплазматического транспорта, т.е. по аксонам симпатических и парасимпатических нервов.

Гормоны же выделяются эндокринными железами непосредственно в кровь и доставляются к органам иммунной системы.

Действие гормонов, нейромедиаторов и пептидов непосредственно на клетки происходит при их связывании с рецепторами клетки на мембране, в цитоплазме или ядре.

Существуют две основные клеточные регуляторные системы. Одна из них контролируется стероидными и тиреоидными гормонами. Свободные молекулы этих гормонов диффундируют в клетки и связываются с цитоплазматическими рецепторами. Затем гормонорецепторный комплекс связывается с определенными участками хроматина и влияет на синтез мРНК и определенных белков.

В отличие от преимущественно ядерных эффектов стероидных гормонов, пептидные гормоны и нейромедиаторы взаимодействуют с рецепторами, расположенными на мембране и регулирующими ферментативные системы мембраны и цитоплазмы. Это ведет к изменению мембраной проницаемости для ионов кальция. Они поступают внутрь, образуют комплекс с белком кальмодулином и активируют АЦ (аденилатциклазу) и ГЦ (гуанилатциклазу). Это одни из важнейших мембранных ферментов, катализирующих образование цАМФ (аденозинмонофосфата) и цГМФ (гуанозинмомнофосфата), которые, в свою очередь, запускают цепь ферментативных реакций, влияющих на функциональную активность клетки. Активацию системы цАМФ связывают с подавлением функций лимфоидных клеток, а активацию системы цГМФ со стимуляцией их функций.

Нейроиммунное взаимодействие

В последнее десятилетие выявлены конкретные медиаторы, с помощью которых реализуется взаимосвязь между иммуннокомпетентными и нервными клетками. Открытие иммунномодулирующих свойств нейропептидов позволило существенно дополнить представление о механизмах передачи сигналов от нервной системы к иммунной. На иммуннокомпетентных клетках обнаружены рецепторы ко многим известным нейропептидам, что доказывает их участие в реализации эфферентного звена нейроиммунного взаимодействия.

Симпатический отдел вегетативной нервной системы и регуляция иммунного ответа.

Известно, что лимфоидные органы богато снабжены нервами СО ВНС. Катехоламины, выделяющиеся нервными окончаниями, способны воздействовать на пролиферацию и дифференцировку иммуннокомпетентных клеток через специфические рецепторы, расположенные на их клеточной мембране. В то же время имеются данные о том, что в лимфоидных органах содержатся клетки, которые по своим гистохимическим и иммунногистохимическим свойствам могут быть отнесены к АПУД-системе. АПУД-система - это специализированная система, которые располагаются практически во всех жизненно важных органах, участвуют в поддержании гомеостаза на органном уровне путем выработки биогенных аминов и пептидных гормонов. Спектр продуцируемых ими биологически активных веществ в органах иммунной системы выглядит следующим образом:

а) тимус - серотонин, мелатонин, катехоламины;

б) костный мозг - серотонин, мелатонин, СТГ (соматотропный гормон);

в) селезенка - гистамин, серотонин;

г) лимфоузлы - гистамин.

Выработка указанных биологически активных веществ подразумевает возможность их воздействия на расположенные рядом иммуннокомпетентные клетки, в частности, те из них, на мембране которых экспрессированы адренорецепторы. Следовательно, возможное регулирование пролиферации и дифференцировки этих клеток клетками АПУД-системы, видимо, принципиально сходно с соответствующими эффектами катехоламинов, продуцируемыми симпатическими нервными окончаниями. Тем более, что в процессе иммунизации экспериментальных животных количество "апудоцитов" и синтезируемых ими биологически активных веществ существенно меняется.

Новый подход к оценке роли апудоцитов в иммунной системе связан с более глубоким изучением секреторной активности клеток в органх иммунитета. Речь идет о субпопуляции лимфоцитов - естественных киллерах (NK). По своим морфологическим характеристикам эти клетки относят к категории больших гранулярных лимфоцитов. Они способны оказывать цитотоксический эффект на клетки с чужеродной антигенной структурой. Особое значение NK-клетки приобретают при опухолевом процессе. Клетки в состоянии злокачественной трансформации, обычно, обладают низкой способностью вызывать специфический иммунный ответ. Тогда одним из ведущих защитных механизмов становится цитотоксическое повреждение опухолевых клеток с участием естественных киллеров.

До сих пор не ясен вопрос о биологическом значении особых ультраструктурных образований NK-клеток - цитоплазматических гранул, в связи с чем они получили название больших гранулярных лимфоцитов. В то же время электронно-микроскопическое исследование позволяет провести аналогию между гранулярными структурами NK-клеток и секреторным аппаратом апудоцитов. Были обнаружены в составе гранул NK-клеток биологически активные вещества, продуцируемые апудоцитами, в первую очередь, биогенные амины.

Анализ всей совокупности приведенных данных позволяет высказать новый взгляд на механизм противоопухолевого эффекта NK-клеток. Можно предположить, что значен NK при опухолевом процессе не ограничивается их прямым цитотоксическим действием на клетку-мишень, а служит еще пусковым моментом в сложной цепи противоопухолевых эффектов.

Контакт с опухолевой мишенью провоцирует процесс дегрануляции NK-клеток с выделением биологически активных веществ, среди которых определенное место занимают биогенные амины, способные оказывать выраженное тормозящее действие на процессы клеточного деления и рост опухоли. Таким образом, цитотоксический эффект в отношении конкретных клеток-мишеней перерастает в антипролиферативное воздействие NK на опухоль в целом.

Можно полагать, что несмотря на отсутствие подробных сведений о взаимоотношениях в функционировании симпатических нервных окончаний в лимфоидных органах и апудоцитов, продуцирующих катехоламины, в процессе формирования иммунного ответа, два эти "отдела" могут функционировать как единое целое в плане соответсвующей регуляции пролиферации и дифференцировки иммуннокомпетентных клеток. По данным проведенных исследований, катехоламины оказывают подавляющее влияние на пролиферацию Т-клеток, ускоряя дифференцировку Т-супрессоров. Что также может вести и к ингибированию антителообразования плазмоцитами.

Появились также сообщения, что иммуннокомпетентные клетки также способны синтезировать нейроактивные вещества, в том числе катехоламины. Следовательно, логично выделить следующие звенья, включающиеся в лимфозных органах после антигенного воздействия: нервные окончания СО ВНС, апудоциты и собственно иммуннокомпетентные клетки.

Парасимпатический отдел вегетативной нервной системы и регуляция иммунного ответа.

Как в строме, так и в паренхеме лимфоидных органов имеются нервные окончания из ПО ВНС. Известно, что ацетилхолин (нейромедиатор ПО ВНС) обладает способностью, как стимулировать, так и подавлять пролиферацию лимфоцитов, причем влияние медиатора на данный процесс зависит от исходной интенсивности метагениндуцированной пролиферации.

Была сформулирована концепция о возможном механизме влияния эндогенного ацетилхолина на иммунный ответ. В основе иммунностимулирующего влияния нейромедиатора может лежать его способность усиливать продукцию интерлейкина-1 и, возможно, интерферона. Так, известно, что указанные гуморальные факторы оказывают воздействие на пролиферацию и дифференцировку клеток В-звена иммунитета. Они способствуют образованию зрелых В-лимфоцитов из пре-В-элементов и тем самым могут стимулировать гуморальный иммунный ответ. Имеются сведения, что гамма-интерферон может стимулировать дифференцировку В-лимфоцитов на поздних этапах и выполнять функции фактора некроза опухоли, может являться хелперным и диффенцировочным фактором, обладает антисупрессорным действием.

Вместе с тем нельзя не учитывать возможность иммунносупрессивного эффекта гамма-интерферона в отношении гуморального ответа, в основе которого может лежать антипролиферативное действие данного вещества.

По-видимому, вектор влияния гамма-интерферона определяется дозой используемого препарата и уровнем индукции эндогенного вещества, образующегося в процессе иммуногенеза.

Нейропептиды и регуляция иммунного ответа

Большой интерес вызывают исследования роли нейропептидов в регуляции иммунного ответа. В последние годы были получены данные о выделении нейропептидов из гипофиза, надпочечников, щитовидной железы в кровь при стрессовых состояниях, а также из периферической нервной системы в иннервируемые ткани, в том числе лимфоидные; о продуцировании пептидов клетками АПУД-системы, в том числе лимфоидных органов. Наличие рецепторов, наряду со способностью самих иммуннокомпетентных клеток продуцировать нейропептиды, создает вероятность их участия в межклеточных кооператитивных процессах. По аналогии с данными о влиянии гормонов и нейро медиаторов можно предположить, что нейропептиды воздействуют на иммунные клетки через специфические рецепторы при помощи циклических нуклеотидов.

Регуляция иммунного ответа адренокортикотропным гормоном

АКТГ оказывает влияние на функцию по крайней мере трех типов иммунокомпетентных клеток: Т-, В-лимфоцитов и макрофагов.

Действие АКТГ на иммунные клетки-мишени реализуется через С-концевой фрагмент молекулы. В отличие от супрессирующего влияния на антителообразование, АКТГ усиливает рост и дифференцировку В-клеток.

Множественность эффектов АКТГ на В-клетки (подавление антителопродукции и усиление пролиферативной активности) может быть связана с характером действия АКТГ на В-лимфоциты различной стадии зрелости и с различиями в экспрессии рецепторов для АКТГ на разных клетках-мишенях. Синтез АКТГ и эндорфинов иммунных клеток индуцируется кортиколиберином.

Регуляция иммунного ответа тиротропином

ТТГ является одним из первых гормонов гипофиза, иммуннорегулятор ные свойства которого были хорошо изучены в системе in vivo. Наиболее полно исследовано его влияние на развитие гуморального иммунитета. В физиологических концентрациях ТТГ усиливает антителопродукцию, к тимус-зависимому антигену. Для реализации эффекта ТТГ необходимо присутствие Т-лимфоцитов, т.е. его действие опосредуется через Т-лимфоциты.

Помимо клеток гипофиза, ТТГ может синтезироваться Т-лимфоцитами периферической крови после их стимуляции метагеном st enterotoxin, а также в присутствии тиролиберина.

Регуляция иммунного ответа соматотропином

СТГ, продуцируемый гипофизом, является следующим после тиротропина гормоном, иммуннорегуляторные свойства которого хорошо изучены в системе in vivo. При развитии Т-клеточного иммунодефицита СТГ стимулирует пролиферацию и дифференцировку Т-клеток-эффекторов. Усиление генерации цитотоксических Т-клеток под влиянием СТГ также наблюдается после предварительной обработки их инсулином.

Регуляция иммунного ответа аргинин-вазопрессином и окситоцином

Нейрогипофизарные гормоны АВП и окситоцин в очень низких концентрациях способны замещать функцию интерлейкина-2. Хелперный сигнал АВП реализуется через N-концевой гексапептид молекулы, где ведущую роль играет фенилаланин в положении 3. Ингибиторы вазотонического действия болкируют и его иммунологические эффекты.

В тимусе выявлен нейроэндокринный пептидный гормон нейрофизин, биологическая активность которого подобна окситоцину.

Регуляция иммунного ответа веществом p и соматостатином.

Пептиды периферической нервной системы - вещество p и соматостатин, принимают участие в регуляции иммунологических функций и играют важную роль в реакциях воспаления.

Обнаружено участие вещества p и соматостатина в развитии реакции гиперчувствительного немедленного типа. Указанные эффекты этих пептидов связаны, по-видимому, с их участием в регуляции нецитотоксической дегрануляции тучных клеток и базофилов. Физиологические концентрации нейропептидов усиливают секрецию гистамина тканевыми и циркулирующими тучными клетками. Кроме того, вещество p и сомастатин оказывают моделирующее влияние на клетки, включающиеся в развитие реакций гиперчувствительности замедленного типа и клеточный иммунитет.

N-концевой тетрапептидный фрагмент вещества p усиливает фагоцитарную активность макрофагов. Вещество p индуцирует продукцию лимфокинов и монокинов, усиливает пролиферативную активность Т-клеток, а соматостатин ее подавляет. Известно, что соматостатин и его предшественники могут синтезироваться базофилами, а вещество p - эозинофилами.

Внесосудистые нервные волокна, содержащие вещество p, образовалитесные контакты с Т-лимфоцитами.

1.5 Гормональная регуляция иммунного ответа

Как свидетельствуют современные данные, практически все популяции клеток, участвующих в иммунных реакциях, снабжены помимо специфических рецепторов к факторам, реализующим иммунный ответ, также рецепторами ко множеству неспецифических, в частности, гормонам и нейромедиаторам, что определяет возможность модулирующего влияния этих агентов на функции иммунокомпетентных клеток.

Глюкокортикоидные гормоны и иммунологические процессы.

Большие фармакологические дозы глюкокортикоидных гормонов, особенно при длительном их применении, вызывают торможение гуморального и клеточного иммунного ответа и активности отдельных клеточных пулов, участвующих в иммунологических реакциях.

Влияние глюкокортикоидов на реализацию гуморального иммунного ответа в определенных культуральных условиях может зависеть от соотношения Т- и В-клеток.

Глюкокортикоиды способны активировать не только вызванную присутствием антигена, но и спонтанную продукцию иммуноглобулинов в клеточных культурах, причем этот эффект проявляется в широком диапазоне концентраций гормонов.

Важной стороной действия больших доз глюкокортикоидных гормонов, во моногом определяющей их тормозящее влияние на гуморальный клеточный иммунный ответ, является способность гормонов угнетать процессы пролиферации, а их влияние на пролиферативные процессы зависит от способности подавлять продукцию интерлейкина-1 и интерлейкина-2. Известно, что ИЛ-1, вырабатываемый стимулированными макрофагами и моноцитами, является фактором, индуцирующим продукцию Т-клетками ИЛ-2, необходимого для нормального процесса клеточной пролиферации.

Глюкокортикоиды способны ингибировать продукцию и других гуморальных факторов, вырабатываемых активированными клетками иммунной системы. Так, показано снижение продукции лимфоцитами фактора, угнетающего миграцию лейкоцитов.

Важно подчеркнуть, что ИЛ-1 и ИЛ-2, а также интерферон в витральных условиях обладают способностью предотвращать или отменять угнетающее действие глюкокортикоидов на функциональную активность клеток иммунной системы.

Это свойство представляет существенный интерес в связи с возможным использованием препаратов интерлейкинов в качестве агентов, защищающих иммунную систему от часто встречающихся в клинической практике нежелательных последствий применения фармакологических доз глюкокортикоидных препаратов.

Гормоны половых желез и функции иммунной системы

Гормоны репродуктивной системы способны влиять на иммунологические функции. Это действие реализуется через специфические рецепторы, существование которых в лимфоидных клетках подтверждено прямыми радиохимическими методами.

Фармакологические дозы эстрогенов и андрогенов вызывают снижение массы тимуса, активности иммунокомпетентных клеток, подавляют проявление гуморальных и клеточных иммунных реакций.

Отсутствие четких корреляций между влиянием эстрогенов на гуморальный иммунный ответ и пролиферативные процессы не позволяет рассматривать этот механизм как определяющий в эффектах влияния гормонов на гуморальный иммунный ответ. Довольно разноречивые результаты получены в отношенни влияния андрогенов на иммунные процессы.

Гормоны щитовидной железы и паращитовидной желез и иммунологические процессы.

Гормоны щитовидной железы тироксин и трийодтиронин при экзогенном введении существенно изменяют функциональную активность иммунной системы и отдельных популяций иммунокомпетентных клеток. Их действие реализуется через цитоплазматические и ядерные рецепторы.

Т оказывает стимулирующее влияние на фагоцитарную активность лейкоцитов, Т оказывает активирующее влияние на цитотоксические функции лимфоцитов периферической крови человека. Возможно, что в механизмах влияния стимулирующего действия тиреоидных гормонов на функции иммунокомпетентных клеток может играть роль их влияние на количество эпителиальных клеток тимуса.

ВВЕДЕНИЕ в организм паратгормона приводит к снижению пролиферативной активности тимоцитов.

Гормоны поджелудочной железы и функции иммунной системы

Инсулин обладает выраженными стимулирующими свойствами при введении животным с нарушениями иммунного ответа, вызванного экспериментальным алаксоновым диабетом.

Нет полной ясности в вопросе о функционировании рецепторного аппарата, обеспечивающего действие гормона на иммунологические функции. Установлено, что покоящиеся лимфоциты лишены рецепторов к инсулину. Антигенная стимуляция приводит в появлению этих рецептором, что отражает процесс дифференцировки клетки и свидетельствует о приобретении ею компетентности для ответа на стимулы, специфические для этих рецепторов.

Важно заметить, что инсулин при экзогенном многократном применении выступает как антиген, вызывая выраженный гуморальный ответ, что создает дополнительную проблему в оценке механизмов их влияния на иммунную систему.

Гормоны эпифиза и иммунный ответ

Обнаружено существенное иммуностимулирующее влияние мелатонина на иммунные процессы. Он стимулирует образование антителообразующих клеток.

ВВЕДЕНИЕ гормона в организм полностью восстанавливает нарушение иммунных реакций, наблюдающихся после блокады функций эпифиза, вызванной сменой светового режима или блокатором бета-адренергических рецепторов пропанолом. Поскольку блокатор опиоидных рецепторов налтрексон полностью отменяет стимулирующий эффект мелатонина при введении in vivo, предполагается, что опиоидные пептиды могут вовлекаться в реализацию влияния этого гормона на иммунную систему.

Гормоны гипофиза и функции иммунной системы

Гормоны гипофиза представляют группу соединений пептидной природы, чрезвычайно разнородную по биологическим свойствам. Это, с одной стороны, гормоны, непосредственно реализующие свои специфические эффекты на метаболизм тканей (АКТГ, СТГ, вазопрессин, окситоцин), с другой стороны, реализующие свои специфические эффекты через гормоны периферических эндокринных желез. При этом, как выяснено работами последних лет, тропные гормоны способны изменять активность метаболизма и функции различных клеток, в том числе клеток иммунной системы, влияя не только через гормоны соответствующих периферических эндокринных желез, но и прямо на эти клетки. Влияние гормонов гипофиза на иммунную систему было рассмотрено выше в разделе "Нейропептиды и регуляция иммунного ответа".

Схема основных путей взаимодействия нейроэндокринной и иммунной систем в целостном организме.

Антиген вызывает активацию антиген-чувствительных клеточных элементов, которые продуцируют множество биологически активных агентов, в том числе цитокины, биогеноамины, гормоны, регуляторные пептиды.

Эти агенты, с одной стороны, вызывают межклеточное взаимодействие в иммунной системе (штриховые стрелки вниз), с другой - вызывают стимуляцию функций нейроэндокринной системы (штриховые стрелки вверх), действуя прямо или опосредованно на центральные регулирующие структуры ЦНС. Сходным образом могут действовать медиаторы, освобождаемые эффекторными клетками. Антиген, по-видимому, может активировать нервные структуры и другими путями, не связанными со стимуляцией им мунокомпетентных клеток. Вызванная антигеном активация нейроэндокринных функций (или введение экзогенных гормонов) через специфические рецепторы иммунокомпетентных клеток изменяет функции как антигенчувствительных, так и эффекторных клеток (сплошные стрелки вниз).

Характер этих изменений - стимуляция (+) или торможение (-) зависят от природы гормонов (медиатора), интенсивности гормонального сдвига (или дозы экзогенного гормона) и характеристик клеток-мишеней.

Заключение

В последнее время высказано предположение, что существует не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная). Иммунокомпетентные клетки способны вмешиваться в морфогенез, а также регулировать течение физиологических функций. Не подлежит сомнению, что Т-лимфоциты играют чрезвычайно важную роль в регенерации тканей. Многочисленные исследования показывают, что Т-лимфоциты и макрофаги осуществляют «хелперную» и «супрессорную» функции в отношении эритропоэза и лейкопоэза. Лимфокины и монокины, выделяемые лимфоцитами, моноцитами и макрофагами, способны изменять деятельность центральной нервной системы, сердечнососудистой системы, органов дыхания и пищеварения, регулировать сократительные функции гладкой и поперечнополосатой мускулатуры.

Таким образом лимфоциты крови осуществляют важнейшие функции защиты организма и поддержания в нем постоянства внутренней среды.

Список литературы

1. Абрамов В.В. "Взаимодействие иммунной и нервной систем". - Новосибирск: Наука, 1988.

2. Воронин Е.С., Петров А.М., Серых М.М., Девришов Д.А. Иммунология. - М.: Колос-Пресс, 2002.--408 с.

3. Галактионов В.Г. Иммунология.--М.:Изд-во МГУ, 1998.--480с.

4. Гущин Г.В., Яковлева Е.Э. Нейрогуморальная регуляция иммунного гомеостаза. Ленинград: Наука, 1986.

5. Зотиков Е.А. Антигенная система человека и гомеостаз. Москва: Медицина, 1982.

6. Корнева Е. А., Шхинек Э. К. "Гормоны и иммунная система". - Л.:Наука, 1988.

7. Логинов С.И., Смирнов П.Н., Трунов А.Н. Иммунные комплексы у животных и человека: норма и патология/РАСХН, Сиб. Отдел. ИЭВС и ДВ.--Новосибирск, 1999.--144с.

8. Маррак Ф, Дж.Каплер. Т-клетка и ее рецепторы//"В мире науки", N 4, апрель 1986.

9. Петров Р.В. "Иммунология". - М.:Медицина, 1987.

10. Половцева Т. В. Понятие о структуре и функциях иммунной системы//"Гематология и трансфузиология", N 3, апрель 1993.

11. Ройт А. Основы иммунологии. М., “Мир”, 1991г., С.328.

12. Урываев Ю.В. Физиологические основы гомеостаза. М. Колос. 1995.

13. «Физиология человека» под редакцией В. М. Покровского, Г. Ф. Коротько, М., «Медицина», 1997, т.1, стр. 298 - 307.

15. Эккерт Р., Рэнделл Д., Огастин Дж. Физиология животных: Механизмы и адаптация. - М., 1991.

16. Ярилин А.А., Шарый Н.Н. Иммунитет и радиация. - М., Знание, серия “Биология”, 1991г., С.64.

17. Яримин А.А. Основы иммунологии.--М.:Медицина,1999.--608с.



Похожие работы:
Витаминоподобные вещества

4.06.2010/реферат

Отличие витаминоподобных веществ от классических витаминов. Физиологическое значение парааминбензойной кислоты. Липотропный эффект холина. Суточная потребность в пангамовой кислоте. Действие и показания к применению оротовой и урацилкарбоновой кислот.

Витамины

4.03.2005/реферат

Витамины группы А. Источники жирорастворимых витаминов. Физиологическое значение. Витамины группы D (кальциферолы). Потребность. Витамины группы Е (токоферолы). Недостаточность. Витамины группы К (филлохиноны). Физиологическое значение.

Основы физиологии человека

17.05.2009/контрольная работа

Характеристика нервной регуляции внешнего дыхания. Структура и организация проводящей системы сердца, ее физиологическое значение. Автоматия сердца, существующие теории и понятие об убывающем градиенте автоматии. Особенность проводящей системы сердца.

Поджелудочная железа: гистология

28.04.2010/реферат

Архитектоника и основные структурные компоненты поджелудочной железы. Ацинусы и их секреторный цикл. Физиологическое значение В- и А-клеток, их роль как продуцентов инсулина. Островки Лангергансаи степень их участия в регуляции углеводного обмена.


Похожие учебники и литература:    Готовые списки литературы по ГОСТ

Анатомия и физиология человека
Инфекционные заболевания. Справочник.
Анатомия, физиология, патология человека - экзаменационные билеты
Гематология в ветеринарии
Правовое обеспечение здравоохранения
Валеология
Валеология 2
Физиология
Неотложные состояния в клинике внутренних болезней
Демография и охрана репродуктивного здоровья населения
Охрана репродуктивного здоровья



Скачать работу: Физиологическое значение лимфоцитов крови, 2017 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Медицина