⭐⭐⭐ Единый реферат-центр

Главная » Рефераты » Текст работы «Электромагнитные поля и волны»


Электромагнитные поля и волны

Вектор напряжённости электрического поля в воздухе, вектора напряжённости магнитного поля, вектор Пойтинга. Цилиндрическую систему координат, с осью аппликат, направленной вдоль оси волновода. Волна первого высшего типа в прямоугольном волноводе.

Дисциплина: Физика и энергетика
Вид работы: задача
Язык: русский
Дата добавления: 31.07.2015
Размер файла: 614 Kb
Просмотров: 2693
Загрузок: 69

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Электромагнитные поля и волны (предмет: Физика и энергетика) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

Текст работыСкачать файл








Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Электромагнитные поля и волны.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Физика и энергетика


Краткое описание документа: Электромагнитные поля и волны задача по дисциплине Физика и энергетика. Понятие, сущность и виды, 2017.

Как скачать? | + Увеличить шрифт | - Уменьшить шрифт






задача по дисциплине Физика и энергетика на тему: Электромагнитные поля и волны; понятие и виды, классификация и структура, 2016-2017, 2018 год.

Задача №1

Дано: вектор напряжённости электрического поля в воздухе изменяется по закону -

где Е0=5мВ/м; ??10 м-1 ; ??40 м-1; ??????f =?????*106 рад/с задано согласно варианта.

Решение.

Для нахождения вектора напряжённости магнитного поля воспользуемся вторым уравнением Максвелла в дифференциальной форме [1],[2]:

(1)

В воздухе векторы напряжённости магнитного поля и магнитной индукции связаны материальным уравнением [1], [2] перепишем (1) в виде:

(2)

Вектор напряжённости электрического поля является гармонической функцией времени поэтому можно записать:

(3)

Комплексная амплитуда вектора напряжённости электрического поля:

(4)

Учитывая, что комплексная амплитуда вектора напряжённости электрического поля имеет лишь одну составляющую , то раскроем определитель ротора комплексного вектора (4) по первой строке:

(5)

Представим комплексный вектор (5) в показательной форме:

(6)

Выразим из (3) комплексную амплитуду вектора напряжённости магнитного поля:

(7)

Представим (7) в показательной форме:

(8)

Определим мгновенное значение вектора напряжённости магнитного поля по формуле:

(9)

Следовательно, амплитуда напряжённости магнитного поля в начале координат будет равна:

(10)

где ?0 = 1,256*10-6 Гн/м магнитная постоянная

Начальную фазу определим по формуле:

(11)

Окончательно (9) примет вид:

По определению вектор Пойтинга находится как векторное произведение векторов электрического и магнитного полей [1], [2]:

Рис.1 К определению вектора Пойтинга.

(12)

Учитывая, что векторное произведение ортов , получим (12) в виде:

(13)

Тогда согласно (13) амплитуда вектора Пойтинга в начале координат будет равна:

(14)

Среднее за период значение вектора Пойтинга находится по формуле:

(15)

Таким образом, вычислим среднее значение вектора Пойтинга:

(16)

Задача№2

Дано: R1=2 мм; R2=7 мм; R3=8 мм; I = 5мА.

Решение.

Введём цилиндрическую систему координат, с осью аппликат, направленной вдоль оси волновода.

Напряжённость магнитного поля имеет отличную от нуля азимутальную компоненту, модуль которой зависит лишь от расстояния до оси волновода т.е:

(17)

Воспользуемся первым уравнением Максвелла в интегральной форме [1],[2]:

(18)

Интеграл в левой части (18) может быть найден для произвольного кругового контура по формуле, выражающую зависимость напряжённости магнитного поля от расстояния от центра волновода:

(19)

Плотность тока в диапазоне 0 <r ??R1 внутреннем проводнике равна:

(20)

Для определения напряжённости магнитного поля введём контур L1, радиус которого лежит в указанном диапазоне расстояний , тогда контур охватывает ток:

(21)

Приравняем (19) и (21) и выразим магнитную напряжённость и индукцию и получим для r1=0,5R1 :

(22)

где ??????для меди, относительная магнитная проницаемость

Запишем (22) в векторной форме:

(23)

В диапазоне расстояний R1< r < R2 контур L2 охватывает полный ток внутреннего проводника (I2 = I). Напряжённость и индукцию магнитного поля на расстоянии r2 = (R1+R2)/2=4,5мм определим аналогично (22):

(24)

Или в векторной форме:

(25)

Внутри внешнего проводника R2< r < R3 плотность тока определяется как:

(26)

Контур L3 охватывает ток , равный сумме полного тока во внутреннем проводнике и части тока во внешнем проводнике, взятом с противоположным знаком:

I3 ??I - I* (27)

Часть тока находится по формуле:

(28)

Подставим (28) в (27) и приведём к общему знаменателю:

(29)

Приравняем (19) и (29) получим:

(30)

Из (30) выразим напряжённость и индукцию и запишем сразу в векторной форме для r3 = (R3+R2)/2=7,5мм :

В диапазоне расстояний контур L4 охватывает ток:

I4 ??I -?I ??0. (31)

Итак, H=B=0, - магнитное поле вне волновода отсутствует.

Задача№3

Дано: Размеры волновода медь t=1,25.

Решение.

1. Волной первого высшего типа в прямоугольном волноводе является волна Н20 , поэтому условия одноволнового режима имеют вид:

они являются частотными границами.

Здесь с=3*108 м/с - скорость света.

2. Поверхностное сопротивление и характеристическое сопротивление заполнения определяются из выражений:

(32)

Коэффициент ослабления в волноводе находится по формуле:

(33)

где ???59,5*106 См/м - удельная проводимость меди;

?????относительная магнитная проницаемость меди;

?а =??0?? = 8,85*10-12*1 = 8,85*10-12 Кл/(В*м) - абсолютная диэлектрическая проницаемость воздуха внутри волновода.

=

для f=2,08ГГц =0,068 м-1, для f=4,16ГГц =0,00184 м-1, для f=5ГГц =0,001816 м-1,

прировняв первую производную по частоте к нулю получим, что =0,001816 м-1 при f=4,949ГГц

Воспользуемся программой Maple для построения графика.

Рис.4.

3. Определим параметры основной волны для частоты f = 1,25 =1,25*2.08=2,6ГГц с длиной волны ?? с/f = 0,115м

Коэффициент ослабления за счёт омических потерь в стенках волновода:

(35)

Коэффициент фазы:

(36)

Длина волны в волноводе:

(37)

Фазовая скорость и скорость переноса электромагнитной энергии соответственно:

(38)

(39)

Характеристическое сопротивление равно:

(40)

5.Частота волн и их длина равны:

(41)

(42)

Проверим условие ????кр для разных мод

Следовательно, могут распространятся на этой частоте волны только типа 10.

Список используемых источников

1. Ю.В. Пименов, В.И. Вольман, А.Д. Муравцов «Техническая электродинамика», М: «Радио и связь», 2000 г. - 536 с.

2. Никольский В.В. Электродинамика и распространение радиоволн. - М: «Наука» 1973г - 607с.



Похожие работы:

Электромагнитный расчет

3.04.2009/реферат

Определение Z1, W1 и площади поперечного сечения провода обмотки статора. Расчет размеров зубцовой зоны статора и воздушного зазора. Напряжение на контактных кольцах ротора при соединении обмотки ротора в звезду. Сечение проводников обмотки ротора.

Электромагнитный расчет проектируемого двигателя постоянного тока

7.09.2009/курсовая работа

Начальные данные проектируемого двигателя постоянного тока. Выбор главных размеров, расчёт геометрии зубцовой зоны, выбор материала и расчет параметров двигателя. Вычисление характеристик намагничивания машины. Коммутационные параметры, расчет обмоток.

Электромагнитные волны

9.11.2010/контрольная работа

Излучение электромагнитных волн. Характеристика электродинамических потенциалов. Понятие и особенности работы элементарного электрического излучателя. Поля излучателя в ближней и дальней зонах. Расчет резонансной частоты колебания. Уравнения Максвелла.

Электромагнитные волны в волноводном тракте

13.01.2011/дипломная работа

Суть волнового процесса, исследование частотной характеристики кольцевых систем СВЧ-диапазона для бегущих и стоячих волн. Методы расчёта диэлектрических волноведущих систем. Закономерности формирования амплитудно-частотной характеристики резонаторов.

Электромагнитные волны между параллельными идеально проводящими плоскостями

7.12.2010/курсовая работа

Понятие поперечно-магнитных и поперечно-электрических волн, решение для этих типов. Описание величин характеристик направляющей системы и распространяющихся в ней волн. Определение фазовой и групповой скорости, особенности их зависимость от частоты.

Электромагнитные волны между параллельными идеально проводящими плоскостями

7.12.2010/курсовая работа

Направляющая система, образованная двумя параллельными проводящими плоскостями. Зависимость составляющей от координаты в пространстве между проводящими плоскостями. Нахождение критической длины волны. Фазовая скорость поперечно-электрической волны.

Электромагнитные колебания в объемных резонаторах

19.01.2011/реферат

Общие сведения об объемных резонаторах. Колебания типа Е и Н в цилиндрических и прямоугольных резонаторах. Классификация типов колебаний в резонаторах. Распределение токов на стенках резонатора. Решение волнового уравнения. Применение индексов m, n, p.

Модуляция и детектирование электромагнитных колебаний

19.07.2007/лабораторная работа

Процесс управления высокочастотными колебаниями при передаче речи, музыки или телевизионных сигналов. Ток несущей частоты. Амплитудная модуляция. Наблюдение модуляции, формы и частоты колебаний. Детектирование.

Применение электромагнитных волн в быту

25.02.2009/реферат

Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.

Продольные электромагнитные волны

29.10.2006/статья

Распространение идеи симметрично-физических переходов на полеволновой процесс. Образование электромагнитных свойств у более симметричной ЭМВ. Трактовка светового диапазона продольных ЭМВ. Симметрийно-физический переход в полеволновом процессе.

Системы уравнений полевой теории стационарных электромагнитных явлений

25.01.2008/реферат

Полевая концепция природы электричества как фундамент классической электродинамики. Доказательство, что уравнения полевой теории стационарных явлений электромагнетизма можно получить гипотетически, ориентируясь на основных эмпирических законах.

Строение атомов, концепция непрерывной дескрепы и электромагнитных свойств атомов и материи

5.01.2009/реферат

Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.

Электродинамические и электромагнитные измерительные приборы

12.11.2008/реферат

Электродинамические измерительные приборы и их применение. Электродинамический преобразователь. Взаимодействие магнитных полей токов. Амперметры, ваттметры, фазометры на основе электродинамических преобразователей. Электромагнитные измерительные приборы.

Переходные электромагнитные процессы

20.10.2010/практическая работа

Определение аналитическим путём и методом расчетных кривых начального значения периодической составляющей тока. Расчет величины тока при несимметричном коротком замыкании. Построение векторных диаграммы токов и напряжений в точке короткого замыкания.




Скачать работу: Электромагнитные поля и волны, 2017 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Физика и энергетика