Пройти Антиплагиат ©



Главная » Рефераты » Текст работы «Свойства линейной прогрессии»


Свойства линейной прогрессии

Задача на нахождение коэффициента эластичности. Точечный прогноз для любой точки из области прогноза. Нахождение производной заданной функции. Эконометрический анализ линейной зависимости показателя от двух факторов. Эластичность в точке прогноза.

Дисциплина: Экономико-математическое моделирование
Вид работы: контрольная работа
Язык: русский
Дата добавления: 30.07.2015
Размер файла: 91 Kb
Просмотров: 1758
Загрузок: 8

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Свойства линейной прогрессии (предмет: Экономико-математическое моделирование) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

Министерство образования и науки Украины

Донбасская государственная машиностроительная академия

Контрольная работа

по дисциплине: «Эконометрика»

Выполнила:

студентка гр. ПВ 09-1з

Бурденюк Е.Н.

Проверила:

Гетьман И.

Краматорск 2010

1. Теоретический вопрос

Свойства линейной прогрессии

1. Прямая регрессии всегда проходит через центр рассеивания корреляционного поля, т.е. через точку ().

2. Из выражения следует, что угловой коэффициент b1 выражается через коэффициент корреляции rxy и среднее квадратичное отклонение фактора и отклика, т.е. знак b1 совпадает со знаком коэффициента корреляции (т.к. всегда).

Если rxy>0, то b1>0, острый, связь между х и у - прямая, т.е. с ростом х у возрастает.

Если rxy<0, то b1<0, тупой связь между х и у обратная.

2. Задача

Найдите коэффициент эластичности для указанной модели в заданной точке x. Сделать экономический вывод.

X=2

1. Найдем производную функции ,

2. Найдем эластичность , тогда

3. Коэффициент эластичности для точки прогноза:

X=2

Коэффициент эластичности показывает, что при изменении фактора X =2 на 1% показатель Y увеличивается на 5%.

3. Задача

Для представленных данных выполнить следующее задание:

1. Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

2. Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

3. Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.

Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными:

№ завода

Фактор

Уровень рентабельности, %

Фондоотдача, грн

Производительность труда, грн

1

3447

33,4

12,3

2

3710

29,1

14,7

3

2827

25,3

10,9

4

2933

27,1

16,1

5

5428

43,3

22,3

6

5001

47,2

21,1

7

6432

49,3

24,3

8

4343

35,7

13,3

9

7321

45,8

27,6

10

6432

43,4

28,3

11

6003

42,1

25,1

12

5342

40,1

20,2

13

4341

33,3

13,7

14

5040

41,2

19,9

15

4343

39,7

14,2

Нелинейную зависимость принять

Обозначим производительность труда (грн) - Х, уровень рентабельности (%) - У. Построим линейную зависимость показателя от фактора. Найдем основные числовые характеристики. Объем выборки n=15 - суммарное количество наблюдений. Минимальное значение Х=2827, максимальное значение Х=7321, значит, производительность труда изменяется от 2827 до 7321 грн. Минимальное значение У=10.9, максимальное значение У=28.3, уровень рентабельности изменяется от 10.9 до 28.3%. Среднее значение . Среднее значение производительности труда составляет 4790,53 грн, среднее значение уровня рентабельности составляет 19.41%. Дисперсия = 1748769,231, = 32,09. Среднеквадратическое отклонение 1322.41, значит среднее отклонение производительности труда от среднего значения, составляет 1322.41 грн., 5,66, значит среднее отклонение уровня рентабельности от среднего значения, составляет 5.66%. Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) - нанесем точки на график. Точка с координатами =(4964; 19.41) называется центром рассеяния. По виду корреляционного поля можно предположить, что зависимость между y и x линейная. Для определения тесноты линейной связи найдем коэффициент корреляции: =0,9 Так как то линейная связь между Х и У достаточная. Пытаемся описать связь между х и у зависимостью . Параметры b0, b1 находим по МНК. Так как b1>0, то зависимость между х и y прямая: с ростом производительности труда уровень рентабельности возрастает. Проверим значимость коэффициентов bi. Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:

0,024. Значимость равна 0,98091636, т.е практически 100%. Коэффициент b0 статистически значим.

7,59. Значимость равна 6,42·10-6, т.е 0%, что меньше, чем 5%. Коэффициент b1 статистически значим. Получили модель зависимости уровня рентабельности от производительности труда

После того, как была построена модель, необходимо проверить ее на адекватность.

Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,827. Разброс данных объясняется линейной моделью на 82,7% и на 17,3% - случайными ошибками. Качество модели плохое.

Проверим с помощью критерия Фишера.

Для проверки найдем величины: 345,19 и 6. Вычисляем k1=1, k2=13. Находим наблюдаемое значение критерия Фишера 57,6. Значимость этого значения =0,00006, т.е. процент ошибки равен 0%, что меньше, чем 5%. Модель считается адекватной с гарантией более 95%.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза , х=3000

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:

Найдем полуширину доверительного интервала в каждой точке выборки xпр:

е - средне квадратичное отклонение выборочных точек от линии регрессии 2,45

ty = критическая точка распределения Стьюдента для надежности =0,9 и k2=13.

n =15.

или

xпр - точка из области прогнозов.

Прогнозируемый доверительный интервал для любого х такой , где (х=5000)=5,4, т.е. доверительный интервал для хпр=5000 составит от 14,08 до 25,01 с гарантией 90%.

Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.

Т.е. при производительности труда 5000 грн уровень рентабельности составит от 14% до 25%.

Найдем эластичность.

Для линейной модели

Коэффициент эластичности показывает, что при изменении х=5000 на 1% показатель y увеличивается на 0,996%.

Обозначим фондоотдачу - Х, уровень рентабельности - У. Построим нелинейную зависимость показателя от фактора вида . Найдем основные числовые характеристики. Объем выборки n=15 - суммарное количество наблюдений.

Минимальное значение Х=25.3, максимальное значение Х=49.3, значит, фондоотдача изменяется от 25.3 до 49.3грн. Минимальное значение У=10.9, максимальное значение У=28.3, уровень рентабельности изменяется от 10.9 до 28.3%. Среднее значение . Среднее значение фондоотдачи составляет 38.4 грн, среднее значение уровня рентабельности составляет 18.93%.

Дисперсия =55.015, =33.16.

Среднеквадратическое отклонение 7.42, значит среднее отклонение фондоотдачи от среднего значения, составляет 7.42 грн., 5.76, значит среднее отклонение уровня рентабельности от среднего значения, составляет 5.76%.

Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) - нанесем точки на график.

Точка с координатами =(38.4; 18.93) называется центром рассеяния.

По виду корреляционного поля можно предположить, что зависимость между y и x нелинейная.

Пытаемся описать связь между х и у зависимостью . Перейдем к линейной модели. Делаем линеаризующую подстановку: , . Получили новые данные U и V. Для этих данных строим линейную модель:

Проверим тесноту линейной связи u и v. Найдем коэффициент корреляции: 0,782. Между u и v сильная линейная связь.

Параметры b0, b1 находим по МНК.

Проверим значимость коэффициентов bi. Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:

=-3,45. Значимость равна 0,004352681, т.е практически 0%. Коэффициент b0 статистически значим.

4,53. Значимость равна 0,00057, т.е практически 0%. Коэффициент b1 статистически значим.

Получили линейную модель

После того, как была построена модель, необходимо проверить ее на адекватность.

Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,62. Разброс данных объясняется линейной моделью на 62% и на 38% - случайными ошибками. Качество модели хорошее.

Проверим с помощью критерия Фишера.

Для проверки находим величины: 284,224 и 13,85. Вычисляем k1=1, k2=13. Находим наблюдаемое значение критерия Фишера 20,53. Значимось этого значения =0,00057, т.е. процент ошибки практически равен 0%. Модель считается адекватной с гарантией более 62%.

Так как линейная модель адекватна, то и соответствующая нелинейная модель тоже адекватна.

Находим параметры исходной нелинейной модели: а=b1=-3,45; b= b0=4,53.

Вид нелинейной функции: .

Т.е. зависимость уровня рентабельности от фондоотдачи имеет вид: .

Найдем прогноз на основании модели. Выберем произвольную точку из области прогноза [25.3; 49.3], х=1

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:

Найдем полуширину доверительного интервала в каждой точке выборки. Для этого найдем полуширину для линейной модели:

е - средне квадратичное отклонение выборочных точек от линии регрессии 3,721341

uпр - точка из области прогнозов. Прогнозируемый доверительный интервал для любого u такой

Для нелинейной модели найдем доверительный интервал, воспользовавшись обратной заменой: Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.

Прогноз для х=1 составит от 5,31 до 22,58 с гарантией 90%.

Т.е. при фондоотдаче 1 грн. уровень рентабельности составит от 5.31% до 22.58%.

Найдем эластичность.

,

где

Коэффициент эластичности для точки прогноза:

Коэффициент эластичности для точки прогноза:

Коэффициент эластичности показывает, что при изменении фондоотдачи 1 грн. на 1% уровень рентабельности увеличивается на 1.57%.

Обозначим производительность труда - Х1 грн., фондоотдачу - Х2 грн, уровень рентабельности - У %. Построим линейную зависимость показателя от факторов. Найдем основные числовые характеристики. Объем выборки n=15 - суммарное количество наблюдений. Минимальное значение Х1=2827, максимальное значение Х1=7321, значит, производительность труда изменяется от 2827 до 7321грн. Минимальное значение Х2=25.3, максимальное значение Х2=49.3, значит, фондоотдача изменяется от 25.3 до 49.3грн. Минимальное значение У=10.9, максимальное значение У=28.3, уровень рентабельности изменяется от 10.9 до 28.3%. Среднее значение

Среднее значение производительности труда составляет 4862,87 грн, среднее значение фондоотдачи составляет 38.4 грн., среднее значение уровня рентабельности составляет 18.93%.

Дисперсия =1777276,41, =55,016 =33.16.

Среднеквадратическое отклонение 1333.15, значит среднее отклонение производительности труда от среднего значения, составляет 1333.15грн., среднеквадратическое отклонение 7.42, значит среднее отклонение фондоотдачи от среднего значения, составляет 7.42грн.5.76, значит среднее отклонение уровня рентабельности от среднего значения, составляет 5.76%.

Прежде чем строить модель, проверим факторы на коллинеарность. По исходным данным cтроим корреляционную матрицу. Коэффициент корреляции между X1 и X2 равен 0,88. Так как , значит X1 и X2 - неколлинеарные

Определим, связаны ли Х1, Х2 и У между собой.

Для определения тесноты линейной связи найдем коэффициент корреляции: r=0,898. Так как то линейная связь между Х1, Х2 и У достаточная.

Пытаемся описать связь между х и у зависимостью .

Параметры b0, b1, b2 находим по МНК. .

Проверим значимость коэффициентов bi.

Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:

0,062. Значимость равна 0,951, т.е приблизительно 95%. Так как это значение намного больше 5%, то коэффициент b0 статистически не значим.

3,94. Значимость равна 0,00195, т.е 0.2%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.

-0,21. Значимость равна 0,837, т.е 83%. Так как это значение больше 5%, то коэффициент b2 статистически не значим.

Проверим адекватность.

Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,843. Разброс данных объясняется линейной моделью на 84% и на 16% - случайными ошибками. Качество модели хорошее.

Проверим с помощью критерия Фишера.

Для проверки найдем величины: 195.69 и 6.073. Вычисляем k1=2, k2=12. Находим наблюдаемое значение критерия Фишера 32.22 Значимось этого значения =0,000015, т.е. процент ошибки равен 0,0015%. Так как это значение меньше 5%, то модель считается адекватной с гарантией более 99%.

Получили модель зависимости уровня рентабельности плодоовощным консервным заводам области от производительности труда и фондоотдачи

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза: х1=5000, х2=30. Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:

Т.е. при производительности труда 5000 грн и фондоотдаче 1 грн уровень рентабельности составит 19.84%.

Найдем эластичность по каждому фактору.

Для линейной модели

,

.

Коэффициент эластичности показывает, что увеличении производительности труда с 5000 грн. на 1% и при фондоотдаче 30 грн., уровень рентабельности увеличится с 19.84 грн на 1.05%.

Для линейной модели

,

.

Коэффициент эластичности показывает, что при производительности труда 5000 грн. и увеличении удельного фондоотдачи с 30грн. на 1%, уровень рентабельности уменьшится с 19.84 грн на 0,06%.

Для увеличения рентабельности заводов целесообразней увеличивать производительность труда при неизменной фондоотдаче.

Использованная литература

1. Экономико-математические методы и прикладные модели: Учебное пособие для вузов / В.В. Федосеев, А.Н. Гармаш и др. - М.: ЮНИТИ, 1999. - 391 с.

2. Орлова И.В. Экономико-математические методы и модели. Выполнение расчетов в среде EXCEL. Практикум: Учебное пособие для вузов. - М.: Финстатинформ, 2000.- 136 с.

3. Компьютерные технологии экономико-математического моделирования: Учебное пособие для вузов / Д.М. Дайитбегов, И.В. Орлова. - М.: ЮНИТИ, 2001.

4. Эконометрика: Учебник / Под ред. И.И. Елисеевой. - М.: Финансы и статистика, 2001.

5. Практикум по эконометрике: Учебное пособие / Под ред. И.И. Елисеевой - М.: Финансы и статистика, 2001.

Заказать работу без рисков и посредников








Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Свойства линейной прогрессии.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Экономико-математическое моделирование







контрольная работа по предмету Экономико-математическое моделирование на тему: Свойства линейной прогрессии - понятие и виды, структура и классификация, 2017, 2018-2019 год.



Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.

Похожие работы:

Некоторые вопросы эконометрического моделирования

6.11.2009/контрольная работа

Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.




Скачать работу: Свойства линейной прогрессии, 2019 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Экономико-математическое моделирование