Пройти Антиплагиат ©



Главная » Рефераты » Текст работы «Схема Бернуллі»


Схема Бернуллі

Дослідження послідовності (серії) n випробувань. Особливості застосування формули Бернуллі. Знаходження ймовірності того, що при n випробуваннях подія А з'явиться m разів і не з'явиться n-m разів. Теорема додавання ймовірностей несумісних подій.

Дисциплина: Экономико-математическое моделирование
Вид работы: контрольная работа
Язык: украинский
Дата добавления: 2.02.2015
Размер файла: 70 Kb
Просмотров: 1865
Загрузок: 9

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Схема Бернуллі (предмет: Экономико-математическое моделирование) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

Міністерство освіти і науки України

Приватний вищий навчальний заклад

Європейський університет

Запорізька філія

Контрольна робота

з дисципліни: Теорія ймовірності і математична статистика

Варіант № 5 - Схема Бернуллі

Виконав

Перевірив:

Запоріжжя,

2007р.

СХЕМА БЕРНУЛЛІ

У багатьох задачах теорії ймовірностей, статистики та повсякденної практики треба досліджувати послідовність (серію) п випробувань. Наприклад, випробування "кинуто 1000 однакових монет" можна розглядати як послідовність 1000 більш простих випробувань - "кинута одна монета". При киданні 1000 монет імовірність появи герба або надпису на одній монеті не залежить від того, що з'явиться на інших монетах. Тому можна казати, що у цьому випадку випробування повторюються 1000 разів незалежним чином.

Означення 1. Якщо усі п випробувань проводити в однакових умовах і імовірність появи події А в усіх випробуваннях однакова та не залежить від появи або непояви А в інших випробуваннях, то таку послідовність незалежних випробувань називають схемою Бернуллі.

Нехай випадкова подія А може з'явитись у кожному випробуванні з імовірністю Р(А) = р або не з'явитись з імовірністю q = Р{А) = 1 - р.

Поставимо задачу: знайти імовірність того, що при п випробуваннях подія А з'явиться т разів і не з'явиться п - т разів. Шукану імовірність позначимо Рп(т).

Спочатку розглянемо появу події А три рази в чотирьох випробуваннях. Можливі такі події

тобто їх

Якщо подія А з'явилася 2 рази в 4 випробуваннях, то можливі такі події

У загальному випадку, коли подія А з'являється т разів у п випробуваннях, таких складних подій буде

Обчислимо імовірність однієї складної події, наприклад,

Імовірність сумісної появи п незалежних подій дорівнює добутку ймовірностей цих подій згідно з теоремою множення ймовірностей, тобто

Кількість таких складних подійі вони несумісні. Тому, згідно з теоремою додавання ймовірностей несумісних подій, маємо

Формулу (1) називають формулою Бернуллі. Вона дозволяє знаходити імовірність появи події А т разів при п випробуваннях, які утворюють схему Бернуллі.

Зауваження 1. Імовірність появи події Арп випробуваннях схеми Бернуллі менш т разів знаходять за формулою

Імовірність появи події А не менше т разів можна знайти за формулою

або за формулою

Імовірність появи події А хоча б один раз у п випробуваннях доцільно знаходити за формулою

Зауваження 2. У багатьох випадках треба знаходити найбільш імовірне значення то числа т появ події А. Це значення т визначається співвідношеннями

Число то повинно бути цілим. Якщо (п + 1)р - ціле число, тоді найбільше значення імовірність має при двох числах

Зауваження 3. Якщо імовірність появи події А в кожному випробуванні дорівнює р, то кількість п випробувань, які необхідно здійснити, щоб з імовірністю Р можна було стверджувати, що подія А з'явиться хоча б один раз, знаходять за формулою,

Приклад 1. Прилад складено з 10 блоків, надійність кожного з них 0.8. Блоки можуть виходити з ладу незалежно один від одного. Знайти імовірність того, що

а) відмовлять два блоки;

б) відмовить хоча б один блок;

в) відмовлять не менше двох блоків.

Розв'язання. Позначимо за подію А відмову блока. Тоді імовірність події А за умовою прикладу буде

Р(А) =р = 1-0.8 = 0.2, тому д = 1-р = 1-0.2=0.8.

Згідно з умовою задачі п = 10. Використовуючи формулу Бернуллі та Зауваження 1, одержимо

Приклад 2. За одну годину автомат виготовляє 20 деталей. За скільки годин імовірність виготовлення хоча б однієї бракованої деталі буде не менше 0.952, якщо імовірність браку будь-якої деталі дорівнює 0.01?

Розв'язання. Застосовуючи формулу (2), знайдемо спочатку таку кількість виготовлених деталей, щоб з імовірністю р = 0.952 можна було стверджувати про наявність хоча б однієї бракованої деталі, якщо імовірність браку за умовою р = 0.01

Отже, за час(годин) автомат з імовірністю 0.952 виготовить хоча б одну браковану деталь.

Приклад 3. При новому технологічному процесі 80 % усієї виготовленої продукції має найвищу якість. Знайти найбільш імовірне число виготовлених виробів найвищої якості серед 250 виготовлених виробів.

Розв'язання. Позначимо шукане число то-Згідно Зауваження

За умовою прикладу п = 250, р = 0.8, q -- 0.2, тому

Але то повинно бути цілим числом, тому то = 200.

СПИСОК ВИКОРИСТАНОІ ЛІТЕРАТУРИ

1. Барковський В.В., Барковська Н.В., Лопатін О.К. теорія ймовірностей та математична статистика. - К.: ЦУЛ, 2002. - 448с.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 1980.

3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М.: Высшая школа, 1975.

4. Гнеденко Б.В. Курс теории вероятностей. - М.: наука, 1988.

5. Леоненко М.М., Мішура Ю.С. та ін. Теоретико-ймовірностні та статистичні методи в економетриці та фінансовій математиці. - К.: Інформтехніка, 1995.

Заказать работу без рисков и посредников








Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Схема Бернуллі.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Экономико-математическое моделирование







контрольная работа по предмету Экономико-математическое моделирование на тему: Схема Бернуллі - понятие и виды, структура и классификация, 2017, 2018-2019 год.



Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.

Похожие работы:

Воспользоваться поиском



Скачать работу: Схема Бернуллі, 2019 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Экономико-математическое моделирование