-
Пройти Антиплагиат ©



Главная » Рефераты » Текст работы «Уравнения регрессии»


Уравнения регрессии

Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.

Дисциплина: Экономико-математическое моделирование
Вид работы: контрольная работа
Язык: русский
Дата добавления: 21.08.2015
Размер файла: 200 Kb
Просмотров: 3029
Загрузок: 19

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Уравнения регрессии (предмет: Экономико-математическое моделирование) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

УГСХА

Контрольная работа

по дисциплине «Эконометрика»

студента 1 курса

заочного отделения

экономического факультета

специальность 060500

«Финансы и кредит»

Кириллова Юрия Юрьевича

шифр 07045

Ульяновск 2008

Задание 1

Рассчитанные параметры уравнений линейной (I), степенной (II), полулогарифмической (III), обратной (IV), гиперболической парной (V), экспоненциальной (VI) регрессии приведены в таблице 1.

Во всех 6 уравнениях связь умеренная (r ~ 0.5), однако в уравнении IV связь обратная, во всех остальных - прямая. Коэффициент детерминации rІ также различается не сильно. Наиболее сильное влияние вариации фактора на вариацию результата в уравнении I, в наибольшей мереслабое в уравнении V.

Средний коэффициент эластичности колеблется от 0,1277 в уравнении V до 0,1628 в уравнении III, из чего можно сделать вывод о слабом влиянии прожиточного минимума на размер пенсий.

Средняя ошибка аппроксимации чрезвычайно высока (96%) для третьего уравнения и незначительна (~3%) для остальных пяти.

Fтабл.=4,84 для б=0,05. Неравенство Fтабл.<Fфакт. выполняется только для уравнения линейной регрессии, следовательно, все остальные уравнения регрессии ненадежны.

Итак, уравнение линейной регрессии является лучшим уравнением регрессии, применительно к данной задаче. Оно статистически надежно, обладает невысокой ошибкой аппроксимации и умеренным коэффициентом корелляции.

Для уровня значимости б=0,05 доверительный интервал прогноза результата, при увеличении прогнозного значения фактора на 10% для уравнения I 231,44±19,324, для уравнения II 231,52±0,0377, для уравнения III 455,06±19,953, для уравнения IV 231,96±20,594, для уравнения V 231,39±0,0004, для уравнения VI 231,17±0,0842.

Задание 2

Таблица 2. Исходные данные задания 2 (n=25).

Для расчета значимости уравнений сначала необходимо найти стандартизированные коэффициенты регрессии по формуле

.

По этой формуле получаем в первом уравнении в?=0,6857, в?=-0,2286, во втором уравнении в?=0,7543, в третьем уравнении в?=-0,4686. Из стандартизированных уравнений находим для первого уравнения , , для второго уравнения , для третьего . Далее находим Дr и Дr??. Для первого уравнения

,

.

Для второго уравнения

,

для третьего

.

Для второго и третьего уравнений Дr??=1. Находим

.

Для первого уравнения получаем , для второго , для третьего .

Далее находим F-критерий Фишера

.

Для первого уравнения Fфакт.=18,906>Fтабл.=3,44, что подтверждает статистическую значимость уравнения. Для второго уравнения Fфакт.=30,360>Fтабл.=4,28, что подтверждает статистическую значимость уравнения. Для третьего уравнения Fфакт.=6,472>Fтабл.=4,28, что подтверждает его статистическую значимость. Итак, F-критерий Фишера подтверждает значимость всех трех уравнений с вероятностью 95%.

Для оценки значимости коэффициентов регрессии первого уравнения вычисляем t-критерий Стьюдента

,

где частный F-критерий

.

Получаем , . Отсюда , . Для б=0,05 . Следовательно, коэффициент регрессии b? является статистически значимым, а коэффициент b? таковым не является.

Показатели частной корелляции для первого уравнения вычисляются по формуле

.

Получаем , .

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле

.

Для первого уравнения получаем , , для второго уравнения , для третьего уравнения .

Задание 3

Исходная система уравнений

содержит эндогенные четыре переменные и две предопределенные .

В соответствии с необходимым условием идентификации D+1=H первое и второе уравнения сверхидентифицируемы (H=2, D=2), третье уравнение идентифицируемо (H=1, D=0), четвертое уравнение является тождеством и в проверке не нуждается.

Для первого уравнения

, Det A*?0, rk A=3.

Для второго уравнения

, Det A*?0, rk A=3.

Для третьего уравнения

, Det A*?0, rk A=3.

Четвертое уравнение является тождеством и в проверке не нуждается.

Достаточное условие идентификации выполняется для всех уравнений.

Для оценки параметров этой модели применяется двухшаговый МНК.

Приведенная форма модели

~

~

Заказать работу без рисков и посредников








Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Уравнения регрессии.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Экономико-математическое моделирование







контрольная работа по предмету Экономико-математическое моделирование на тему: Уравнения регрессии - понятие и виды, структура и классификация, 2017, 2018-2019 год.



Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.

Похожие работы:

Уравнения линейной регрессии

12.05.2010/контрольная работа

Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.

Уравнения регрессии. Коэффициент эластичности, корреляции, детерминации и F-критерий Фишера

3.08.2010/контрольная работа

Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.

Коэффициент детерминации. Значимость уравнения регрессии

23.03.2010/контрольная работа

Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.

Составление уравнения корреляции

25.05.2009/лабораторная работа

Построение линейной модели и уравнения регрессии зависимости цены на квартиры на вторичном рынке жилья в Москве в 2006 г. от влияющих факторов. Методика составления матрицы парных коэффициентов корреляции. Экономическая интерпретация модели регрессии.

Линейные уравнения парной и множественной регрессии

11.12.2010/контрольная работа

Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

Автоматизированный априорный анализ статистической совокупности в среде MS Excel

20.02.2010/лабораторная работа

Статистический анализ выборочной совокупности, генеральной совокупности. Экономическая интерпретация результатов статистического исследования предприятий. Нахождение наиболее адекватного нелинейного уравнения регрессии средств инструмента Мастер диаграмм.

Анализ накладных расходов

25.05.2009/лабораторная работа

Построение модели для зависимой переменной, используя пошаговую множественную регрессию. Рассчет индекса корреляции, оценка качества полученного уравнения регрессии с помощью коэффициента детерминации. Оценка статистической значимости уравнения регрессии.

Анализ накладных расходов

17.10.2009/лабораторная работа

Построение уравнения множественной регрессии в линейной форме с полным набором факторов, отбор информативных факторов. Проверка значимости уравнения регрессии по критерию Фишера и статистической значимости параметров регрессии по критерию Стьюдента.

Анализ предприятий одной отрасли РФ

1.07.2010/лабораторная работа

Проведение анализа экономической деятельности предприятий отрасли: расчет параметров линейного уравнения множественной регрессии с полным перечнем факторов, оценка статистической значимости параметров регрессионной модели, расчет прогнозных значений.

Доверительные интервалы прогноза. Оценка адекватности и точности моделей

13.08.2010/контрольная работа

Расчет доверительных интервалов прогноза для линейного тренда с использованием уравнения экспоненты. Оценка адекватности и точности моделей. Использование адаптивных методов в экономическом прогнозировании. Экспоненциальные средние для временного ряда.

Корреляционный и регрессионный анализ

5.05.2010/контрольная работа

Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

Методы решения уравнений линейной регрессии

25.06.2010/контрольная работа

Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.

Модели прогнозирования на основе временных рядов

3.06.2009/контрольная работа

Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.

Моделирование экономических систем

23.01.2009/контрольная работа

Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.




Скачать работу: Уравнения регрессии, 2019 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Экономико-математическое моделирование