Пригодилось? Поделись!

Гамогенез растений. Основы генетики и селекции

Реферат

на тему: "Гамогенез растений. Основы генетики и селœекции"


Содержание

Гаметогенез и развитие растений

Основы генетики и селœекции. Закономерности наследственности. Основные понятия генетики

Хромосомная теория наследственности

Моногибридное скрещивание

Дигибридное скрещивание

Анализирующее скрещивание

Сцепленное наследование признаков

Генетика пола

Наследование признаков, сцепленных с полом


Гаметогенез и развитие растений

У растений гаметогенез протекает значительно сложнее. При этом процесс мейоза имеет место не на стадии образования гамет, а на стадии образования спор. Вместе с тем, у растений наблюдается чередование поколений с диплоидным и гаплоидным набором хромосом. Поколение с гаплоидным набором хромосом принято называть гаметофитом и образует гаметы в процессе митоза. Поколение с диплоидным набором хромосом принято называть спорофитом и образует споры в процессе мейоза. Гаметофит развивается из гаплоидных спор, а спорофит - из диплоидной зиготы, образующейся в результате оплодотворения.

В цикле развития мейоз всœегда имеет место один раз. Учитывая зависимость отпериода жизни спорофита и гаметофита͵ взрослое растение может быть гаплоидным или диплоидным.

Размножение и развитие водорослей. У низших растений преобладающим поколением является гаметофит. Он размножается бесполым путем, образуя клетки, из которых развиваются взрослые особи. В определœенный период гаметофит дает гаметы, разные или одинаковые по величинœе. После оплодотворения образуется зигота͵ которая сразу же делится мейозом и образует споры, дающие начало новым гаметофитам.

Размножение и развитие высших споровых растений. У мхов, папоротников, плаунов и хвощей размножение происходит спорами. Половое поколение развивается при прорастании споры (п). Из споры образуется заросток (п), в котором развиваются органы полового размножения антеридии и архегонии. В антеридиях в процессе митоза образуются сперматозоиды, а в архегониях - яйцеклетка (как правило, одна). При наличии воды сперматозоиды проникают в архегонии и оплодотворяют яйцеклетку, при этом образуется зигота (2п). Из зиготы развивается зародыш, а далее молодое растение спорофит. У взрослого растения в специальных органах спорангиях (2л) в результате мейоза образуются споры (л), которые дают начало новому поколению.

У мхов взрослым растением является гаметофит (л), развивающийся из спор, а спорофит образуется на гаметофите в виде коробочки на ножке.

У папоротников, плаунов и хвощей преобладающим поколением во взрослом состоянии является спорофит, на котором образуются споры. Гаметофит представлен в виде небольшого заростка и существует очень недолго.

Размножение и развитие семенных растений. У семенных растений размножение происходит семенами, преобладающим поколением является спорофит, а гаметофит сильно редуцирован, развивается в спорофите и представлен лишь несколькими клетками. Процесс развития семенных растений рассмотрим на примере цветковых растений.

Взрослое растение имеет диплоидный набор хромосом и является спорофитом. Оно развивается из семени. Репродуктивным органом служит цветок, в котором образуются женский орган - пестик и мужской - тычинки. В завязи пестика в семязачатках из клеток спорангия мейозом образуются 4 крупные споры (л), одна из которых развивается в женский заросток гаметофит, а три отмирают. Спора трижды делится митозом, и образуется 8-ядерный зародышевый мешок. Затем ближайшее к пыльцевходу крупное ядро образует яйцеклетку, 2 сосœедних ядра - 2 сопутствующие клетки - синœергиды. На противоположном полюсе мешка располагаются 3 клетки-антиподы, а в центре образуется центральная двухъядерная клетка. Все ядра гаплоидные.

В пыльцевых мешках тычинок из клеток микроспорангия мейозом возникает много мелких спор (л). Все они развиваются и дают начало мужскому заростку - гаметофиту. Спора делится митозом и образует вегетативную и генеративную клетки. Ядро генеративной клетки делится еще раз и образуются 2 спермия. Вегетативная и генеративная клетки покрываются оболочкой и образуется пыльцевое зерно. При попадании пыльцы на рыльце пестика вегетативная клетка прорастает и образует пыльцевую трубку, которая продвигает генеративную клетку к пыльцевходу. Два спермия через пыльцевход попадают в зародышевый мешок. Один спермий сливается с яйцеклеткой и образуется зигота (2л), из которой развивается зародыш семени. Другой спермий сливается с 2 ядрами центральной клетки, в результате образуется эндосперм (Зл) семени, в котором запасаются питательные вещества. Этот процесс, называемый двойным оплодотворением, был открыт русским ученым СП. Навашиным. В результате двойного оплодотворения в семязачатке образуется семя, а из покрова семязачатка - семенная кожура. Вокруг семени из завязи и других частей цветка формируется плод.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, у растений при переходе от низших к высшим наблюдается изменение преобладающего поколения от гаметофита к спорофиту.

 

Основы генетики и селœекции. Закономерности наследственности. Основные понятия генетики

 

Генетика - наука о закономерностях наследственности и изменчивости организмов.

Наследственность - способность организма передавать свои признаки и особенности развития потомству.

Изменчивость - способность организма изменяться в процессе индивидуального развития под воздействием факторов среды. Изменчивость - явление нестабильности наследственных свойств.

Материальной основой наследственности являются половые клетки - гаметы. При бесполом размножении таковыми являются соматические клетки. Но клетки не содержат готовые "зародыши признаков", а несут только структурные задатки возможных признаков - гены.

Ген - участок молекулы ДНК, ответственный за проявление какого-либо признака. Ген является единицей наследственности, определяющей признак, единицей измерения биологического явления.

Реализация признака у организма идет по схеме:

ген-" белок - "признак.

Генотип - совокупность всœех наследственных признаков - генов организма, полученных от родителœей.

Фенотип - совокупность внутренних и внешних признаков, которые проявляются у организма при взаимодействии генотипа со средой.

Гены располагаются в хромосомах в определœенных участках - локусах. В диплоидных клетках содержатся две гомологичные хромосомы, в которых располагаются парные гены.

Аллельные гены (аллели) - парные гены, расположенные в гомологичных хромосомах, в одних и тех же локусах и ответственные за проявление какого-либо признака (к примеру, цвет волос, глаз, форма уха и т.д.). Аллельные гены могут нести одинаковые качества одного признака или противоположные - альтернативные. К примеру, темные и светлые аллели окраски волос, серые и карие аллели цвета глаз. Аллельные гены обозначаются буквами латинского алфавита (А и а, В и Ь, С и с и т.д.).

Гомозигота - организм (зигота), имеющий одинаковые аллели одного гена в гомологичных хромосомах (АА, аа).

Гетерозигота - организм (зигота), имеющий разные аллели одного гена в гомологичных хромосомах (Аа), ᴛ.ᴇ. несущие альтернативные признаки.

Признаки-гены бывают доминантными и рецессивными.

Доминантный признак (ген) - господствующий, преобладающий, проявляется всœегда как в гомозиготном, так и в гетерозиготном состоянии. Доминантный признак обозначается заглавной буквой (А, В, С).

Рецессивный признак (ген) - подавляемый, проявляющийся только в гомозиготном состоянии. В гетерозиготном состоянии рецессивный признак подавляется доминантным. Он обозначается соответствующей строчной буквой (а, Ь, с).

Хромосомная теория наследственности

Основные положения хромосомной теории наследственности сформулированы Т. Морганом. В основе хромосомной теории лежит поведение хромосом в мейозе, от которого зависит качество образующихся гамет.

1. Единицей наследственной информации является ген, локализованный в хромосоме.

2. Гены в хромосомах располагаются линœейно, образуя группу сцепления. Гены, расположенные в одной хромосоме, наследуются совместно, сцеплено.

3. Сцепление генов может нарушаться в процессе мейоза в результате кроссинговера.

4. В процессе мейоза гомологичные хромосомы, а следовательно, и аллельные гены попадают в разные гаметы. Гаметы всœегда гаплоидны.

5. Негомологичные хромосомы, а следовательно, и неаллельные гены расходятся произвольно, независимо друг от друга и образуют различные комбинации в гаметах, число которых определяется по формуле 2", где п - количество пар гомологичных хромосом.

В результате кроссинговера число комбинаций генов в гаметах увеличивается.

Моногибридное скрещивание

Основные закономерности наследственности были открыты Г. Менделœем (1865). Метод, который использовал Мендель при выведении законов, принято называть гибридологическим. Гибриды - потомки, полученные от скрещивания двух организмов, несущих альтернативные признаки. Для опытов Мендель выбрал растение горох по следующим причинам. Горох - самоопыляемое растение и в связи с этим легко получить чистую линию, ᴛ.ᴇ. гомозиготные особи по определœенным признакам. У гороха имеются ярко выраженные альтернативные признаки по цвету семян, форме горошин, окраске цветков, величинœе растений и т.д. И наконец, большое число потомков дает возможность получить статистически достоверные результаты.

Исходные родительские особи в опытах были гомозиготными, а полученные потомки - гетерозиготными. Для исследования выбирали только один или два признака, а не их совокупность.

Закон единообразия первого поколения (1-й закон Менделя). При скрещивании двух гомозиготных особей с альтернативными признаками в первом поколении всœе гибриды одинаковы по фенотипу и похожи на одного из родителœей. У гибридов I поколения проявляется только доминантный признак.

Закон расщепления признаков (2-й закон Менделя). При скрещивании двух гибридов во втором поколении наблюдается расщепление признаков по фенотипу в соотношении 3:

1. У одной части потомков проявляется рецессивный признак исходной родительской особи.

В основе законов наследования лежит поведение хромосом в мейозе. Исходные родительские особи гомозиготны, ᴛ.ᴇ. аллельные гены в гомологичных хромосомах несут одинаковые признаки. По этой причине чистые родительские линии дают только один тип гамет. При слиянии гамет в зиготу попадают гомологичные хромосомы с альтернативными признаками, но проявляется в фенотипе только доминантный признак.

Гибриды I поколения гетерозиготны и дают два типа гамет А и а по формуле 21 = 2 (1 - одна пара хромосом).

При различных вариантах слияния гамет образуются три типа зигот: АА, 2Ла, аа. Но в фенотипе проявляются только два признака, причем зигот с проявлением доминантного признака в 3 раза больше, чем с рецессивным признаком.

Неполное доминирование. Доминантный признак не всœегда полностью подавляет рецессивный, в связи с этим возможно появление промежуточных признаков.

При неполном доминировании расщепление по фенотипу и генотипу одинаково.

Дигибридное скрещивание

 

Дигибридное скрещивание - скрещивание по двум парам признаков. Оно позволяет установить, как наследование одного признака влияет на характер наследования другого. В опыте Мендель изучал характер наследования окраски и формы семян гороха. Исходные родительские особи были гомозиготными по двум парам признаков.

Закон независимого наследования признаков (3-й закон Менделя). При скрещивании гибридов I поколения по двум парам признаков во II поколении наследование по каждой паре идет независимо друг от друга. В результате образуются 4 фенотипические группы в соотношении 9: 3: 3: 1, причем появляются группы с новыми сочетаниями признаков.

Закон независимого наследования признаков объясняется независимым поведением негомологичных хромосом в мейозе. У каждой особи учитываются только две пары хромосом. Признаки окраски и формы семян находятся в негомологичных хромосомах. У гомозиготных особей образуется только один тип гамет, содержащих по две негомологичные хромосомы (АВ или аЬ). Диплоидный набор восстанавливается у гибридной особи - АаВЬ.

Гибридные особи дают четыре типа гамет по формуле 22 = 4 (где степень 2 означает 2 пары признаков - 2 пары хромосом). Образуются следующие гаметы: АВ, АЬ, аВ, аЬ. Слияние попарно 4 типов гамет каждой особи дает 16 вариантов, представленных в таблице. По фенотипу выделяются 4 группы, причем две из них (3: 3) имеют новую комбинацию признаков.

 

Анализирующее скрещивание

Особи с доминантными признаками при одинаковом фенотипе могут иметь различные варианты генотипов: АА (гомозиготы) или Аа (гетерозиготы). Особи с рецессивным признаком имеют только один вариант генотипа - аа и одно фено-типическое проявление. Для определœения генотипа особей с доминантным признаком проводится анализирующее скрещивание.

Анализирующее скрещивание - скрещивание особи с доминантным признаком, но неизвестным генотипом, с рецессивной гомозиготой, генотип которой всœегда аа. По результату скрещивания определяется генотип особи с доминантным признаком.

1-й вариант. В случае если при скрещивании особи с доминантным признаком с рецессивной гомозиготной особью полученное потомство единообразно, то анализируемая особь с доминантным признаком гомозиготна.

При единообразии поколения каждая родительская особь дает только один тип гамет. Следовательно, особь с доминантным признаком гомозиготна по генотипу.

2-й вариант. В случае если при скрещивании особи с доминантным признаком с рецессивной гомозиготой полученное потомство дает расщепление 1: 1, то исследуемая особь с доминантным признаком гетерозиготна.

В случае расщепления особь с доминантным признаком должна образовывать 2 типа гамет А, а. Следовательно, она гетерозиготна по генотипу.


Сцепленное наследование признаков

Т. Морган изучал наследование различных признаков, находящихся в одной хромосоме. В качестве объекта для генетических исследований была выбрана плодовая мушка дрозофила. Этот объект оказался более удобным по следующим причинам: возобновление потомства идет через 15 дней; прост в разведении в лабораторных условиях; хромосомный набор составляет 4 пары - 8 хромосом; имеются ярко выраженные альтернативные признаки.

Сцепленное наследование - наследование признаков, расположенных в одной хромосоме. В организме великое множество признаков, тогда как число хромосом ограниченно и невелико. Следовательно, одна хромосома несет гены многих признаков. Гены в хромосоме располагаются линœейно. При делœении хромосомы переходят целиком, не дробясь, в гаметы, в связи с этим признаки, гены которых располагаются в одной хромосоме, будут наследоваться совместно, сцеплено.

Закон сцепления (Т. Морган). Гены, находящиеся в одной хромосоме, наследуются совместно, сцеплено, и образуют группу сцепления.

Признаки формы крыльев и окраски тела наследуются совместно, так как они располагаются в одной паре гомологичных хромосом. Расщепление признаков на 4 группы, как при дигибридном скрещивании, не наблюдается. При сцепленном наследовании проявление признаков идет по типу моногибридного скрещивания, количество пар хромосом - одна. В некоторых случаях сцепление может нарушаться, так как в мейозе между гомологичными хромосомами может происходить кроссинговер.

Кроссинговер происходит не всœегда, в связи с этим количество кроссоверных особей значительно меньше, чем количество базовых особей. На основании анализа частоты кроссинговера определяется расстояние между генами на хромосоме и составляются хромосомные карты. Чем дальше друг от друга располагаются гены на хромосоме, тем слабее сцепление между ними и тем выше вероятность кроссинговера.


Генетика пола

Пол особей определяется наличием половой пары хромосом. В соматических клетках самца и самки всœе пары хромосом, кроме одной, похожи и несут одинаковые типы генов. Хромосомы, одинаковые у самца и самки, называются ауто-сомами. Пара хромосом, отличающаяся у самца и самки, принято называть половой. У дрозофилы 4 пары хромосом - 3 пары аутосом и 1 пара половых хромосом, у человека 23 пары - 22 пары аутосом и 1 пара половых хромосом.

Половые хромосомы бывают двух типов: X и У. Пол определяется их сочетанием: XX или ХУ. Пол, определяющийся содержанием ХХ-хромо-сом, принято называть гомогаметным. Гомогаметные особи дают один тип гамет по половым хромосомам. Пол, определяющийся содержанием ХУ-хромосом, принято называть гетерогаметным. Гетеро-гаметные особи дают два типа гамет по половым хромосомам.

Гомогаметные особи: XX - "Х-гаметы.

Гетерогаметные особи: ХУ-"Х-, У-гаметы.

У большинства организмов (человека, других млекопитающих, рептилий, амфибий, мух и др.) женский пол гомогаметный - XX, мужской - гетерогаметный - ХУ. У птиц, некоторых рыб, бабочек гомогаметны самцы - XX, а гетерогаметны самки - ХУ.

В некоторых случаях пол определяется просто отсутствием одной хромосомы (У) в паре. У прямокрылых, пауков, жуков самки имеют набор XX, а самцы - ХО.

Во всœех случаях соотношение полов составляет 1: 1, ᴛ.ᴇ. расщепление по признаку пола в популяциях любого вида равное.


Наследование признаков, сцепленных с полом

Х-хромосома присутствует у обоих полов. В ней располагаются жизненно важные гены. Потеря Х-хромосомы приводит к гибели зиготы. У-хромосома встречается у особей только одного пола и несет ограниченное число генов, характерных для соответствующего пола. Наличие или отсутствие ее может привести лишь к изменению развития половых признаков. По этой причине основные признаки, сосредоточенные в половой паре, организм наследует по Х-хромосоме. У го-могаметных особей ХХ-хромосомы парные, они могут нести доминантные и рецессивные признаки. Но у гетерогаметных особей ХУ-хромосомы непарные и признаки несет только Х-хромосома. По этой причине признаки, расположенные в половых хромосомах, сцеплены с полом особи и проявляются по-разному у различных полов.

К примеру, у человека ген дальтонизма находится в Х-хромосоме и является рецессивным. Носителœем его может быть женщина, а проявление признака наблюдается у мужчин.

Рецессивный признак от матери передается сыновьям и проявляется у них, а от отцов - дочерям. Но признак чаще не проявляется, так как встреча двух Х-хромосом с рецессивными признаками маловероятна. Женщина в этом случае должна быть носителœем рецессивного гена, а мужчина - иметь данный рецессивный признак.


Гамогенез растений. Основы генетики и селекции - 2020 (c).
Яндекс.Метрика