Пригодилось? Поделись!

Гениальные архитекторы природы

Г.Н. Тихонова

На протяжении всœей своей истории человечество было вынуждено бороться со стихийными силами природы. Чтобы выжить, человеку приходилось строить, создавать, изобретать и, конечно, учиться всœему этому. А учиться ему всœегда было у кого, к примеру у растений. Благодаря им человеку удалось создать удивительные архитектурные формы и конструкции: «Хрустальный дворец» – павильон для всœемирной выставки в Лондоне (1851), удивительный по своему решению вокзал в Ливерпуле (1852), Парижская библиотека (1861) и Эйфелœева башня (1889). Уникальность этих сооружений в том, что, несмотря на свои гигантские размеры, всœе они производят впечатление легкости и изящества.

Первым, кто для решения строительных проблем обратился к помощи растений, был, вероятно, архитектор Джозеф Пакстон. В 1837 ᴦ. он возводил крупнейшую для того времени оранжерею из стекла и металла. В молодости Пакстон был любителœем-садоводом и обратил внимание на интересную особенность гигантских плавающих листьев виктории регии. Достигающие 2 м в диаметре, но имеющие незначительную толщину, листья этой лилии поразительно прочны – они, не ломаясь, выдерживают тяжесть взрослого человека. Причина столь удивительной особенности кроется в специфике строения листа. Из его центра с нижней поверхности, той, что опирается на водную гладь, лучами расходятся толстые жилки. По мере приближения к краю листовой пластины они многократно ветвятся, укрепляя всю конструкцию в целом. Именно данный принцип и был позаимствован архитекторами-людьми у архитекторов-растений.

Прочность и легкость – важные качества любой конструкции. Их сочетания можно достичь не только при помощи способа, предложенного нам амазонской водяной лилией. Ребра жесткости усилить можно и другим путем. В тропиках произрастает большое количество растений с очень крупными листьями, площадь поверхности которых колеблется в пределах от 15 до 60 м2! Это, к примеру, всœем известный банан, некоторые виды фикусов, монстер и веерных пальм. Такие размеры требуют предельной легкости листовой пластины, чтобы избежать чрезмерной нагрузки на черешок. Дело осложняется тем, что в местах произрастания растений с гигантскими листьями, как правило, часты проливные дожди и шквальные ветры. Так, на островах Малайского архипелага в течение нескольких часов на землю низвергается просто колоссальное количество воды, и часто эти ливни сопровождаются ураганами. Ну как уцелœеть листьям в таких условиях?!

Банан

Растениям удалось успешно решить эту сложную техническую проблему, используя принцип гофрированности. Позже и люди стали использовать его при создании кровли, стен металлических гаражей, особо прочной и легкой черепицы, шифера, фюзеляжей летательных аппаратов, упаковочного материала. Любопытно, что растениям удалось еще более облегчить свои листовые пластины, перфорируя и разрывая их в определœенных местах. При этом частичное нарушение листовой пластинки ни в коем случае не отражается на ее биологических функциях. Такие продырявленные листы имеют монстеры. А огромные листья бананового дерева разрезаны дождем и ветром на многочисленные узкие полоски, разрывы между которыми доходят порой до самой центральной жилки. Такая свободно реющая на ветру бахрома спасает весь лист от обламывания и слишком жестких лучей солнца. Люди воплотили эту идею в жизнь лишь в 1965 ᴦ. – при сооружении свободнонесущей конструкции защитного навеса на въезде в один из самых глубоких современных тоннелœей под горой Монблан.

Монстера

Со времен античности одним из важнейших архитектурных элементов является колонна. Более 4 тыс. лет люди создавали ее с однородной внутренней структурой – как сплошной цилиндрический монолит, высеченный чаще всœего из мрамора. И лишь не так давно архитекторы научились у растений более рациональным конструкциям, которые одновременно и прочнее, и требуют меньше материала. Ведь основная нагрузка ложится на наружные слои опоры, в то время как внутри она может быть пустотелой. Вспомним соломину злаков! Стебли большинства этих растений имеют в поперечнике всœего 2–5 мм, а в высоту могут достигать более метра и завершаются тяжелым колосом.

При этом и внешний слой опоры можно облегчить, применив способ армирования. Люди освоили данный строительный прием лишь в 1867 ᴦ., когда наблюдательный французский садовник (обращаем внимание: опять садовник!) Ж.Монье изобрел желœезобетон, позаимствовав идею у растений. Без этого открытия многие современные сооружения (мосты через реки и заливы, небоскребы, телœебашни и др.), отличающиеся огромными размерами, были бы немыслимы. Растения же используют принцип армирования уже более 250 млн лет. Многие виды кактусов, к примеру цереусы, имеют прочную арматуру, которая долго сохраняется даже после смерти растения. Нередко в пустынях Северной Америки встречаются гигантские канделябры мертвых кактусов, сохранивших свою форму даже после отмирания мягких тканей. Своеобразная решетчатая форма расположения прочных механических тканей присуща и кактусам опунциям.

Цереус

Тяжелые конструкции с небольшой площадью основания должны иметь каркас – конструкцию из вертикальных и горизонтальных элементов и раскосов для придания прочности. Многие столетия человек применял эту фахверковую, или каркасную, конструкцию, сначала для жилых домов, затем для больших мостов, опор линий электропередачи и так далее. Природа же всœегда исключительно экономно расходовала свои строительные материалы, создавая деревья со сложным решетчатым каркасом из бесчисленных сучьев, веток и веточек, заполняющих большой объем при минимальных затратах. Примером такой конструкции, обеспечивающей повышенную прочность дереву, может служить тропический фикус (Ficus rumphii). Ветви этого растения растут не только центробежно, но и центростремительно (внутрь кроны), придавая ей вид крупноячеистой конструкции.

Другие талантливые создатели каркасов – фикусы-удушители, растения-паразиты. Их семена, попадая на деревья, прорастают в них. Затем удушитель спускает вниз несколько питающих корней. После того как они закрепятся в почве, по бокам от них начинают отходить горизонтальные воздушные корни, оплетающие ствол дерева-опоры. Этот каркас душит дерево, и оно погибает. Фикус же продолжает жить. Его сетчатая конструкция из корней настолько прочна, что легко выдерживает вес гигантского растения, даже когда дерево-опора сгнивает полностью.

Природа подсказала человеку и много других инженерных идей. К примеру, принцип свайного строения, который имеет сразу несколько достоинств: прочность и свободную циркуляцию воздуха между помещениями и водой, что предохраняет постройки от преждевременного гниения. Вместе с тем, сваи поднимают сооружение на такую высоту над поверхностью воды или сырой почвы, которая гарантирует безопасность при паводках. Свайное строительство широко распространено в местах, где существует угроза частых наводнений, его применяют при ведении буровой разведки нефти в шельфовых зонах.

Человеческие постройки на сваях известны уже более 4 тыс. лет, но природа использует данный метод гораздо дольше. Вспомним хотя бы ходульные корни у пандануса1.

Человеку, чтобы забить сваю, нужно приложить много усилий, а растение решает эту задачу проще. Так, с веток некоторых панданусов, входящих в состав мангровых зарослей (Pandanus utilis, P.tectorius и др.), падают не семена, а уже готовые тяжелые проростки 60–100 см длиной, конец которых заострен, как копье, и утяжелœен. Падая, эти проростки-дротики легко и глубоко втыкаются во влажную почву, закрепляются и сразу же начинают расти. Позднее у них развивается целая система ходульных корней. И эти сваи куда совершеннее тех, что делают люди, – они выдерживают чудовищный натиск прибойных волн, которые легко разрушают постройки человека. Ходульные корни растений мангровых зарослей обладают высокой эластичностью: приняв на себя удар волны, они прогибаются, а затем, при откате волны, вновь выпрямляются.

Лазающие кактусы и усики тыквы

Зачастую представители разных семейств растительного мира, попадая в одинаковые условия, становятся внешне очень похожими друг на друга, и наоборот, близкородственные виды, произрастающие в разных условиях, становятся настолько непохожими, что их внешний вид может у кого угодно вызвать сомнение в подлинности их родственных связей.

К примеру, кактусы мы традиционно представляем себе как колючие растения шарообразной или цилиндрической формы, произрастающие на засушливых территориях. В большинстве случаев так оно и есть. Но не всœе кактусы таковы. Среди них есть изумительно красивые представители рода рипсалис (Rhipsalis), которые приспособились к жизни в кронах лесных гигантов. По внешнему виду они напоминают массу тонких переплетенных веревок и нитей, стремящихся забраться как можно выше по стволу дерева, поближе к свету. Особенно впечатляют рипсалисы в период цветения – представьте себе воздушные зелœеные гирлянды, увешанные изящными хрупкими венчиками, цветными колокольчиками, мельчайшими яркими капельками и крапинками. Известный кактусовед Курт Бакерберг писал, что «эти кактусы, напоминающие зелœеные невесомые облака, надевают на себя изысканные яркие ожерелья из сияющих снежно-белых, вишневых, золотисто-желтых и темно-голубых ягод».

Рипсалис

Добавим, что кружева рипсалисов украшают леса Центральной и Южной Америки, они встречаются даже на Цейлоне и Мадагаскаре2.

Разумеется, в тропиках существует и множество других лазающих растений. Все они стремятся из вечных сумерек подлеска наверх, к свету. Для того чтобы успешно справиться с этой задачей, растения изобрели разнообразные и в техническом отношении весьма совершенные приспособления: шипы на ветвях, крючочки на воздушных корнях и черешках листьев, петли-арканы, диски с шипиками и даже цепляющиеся соцветия.

Рипсалидопсис

Биолог Г.Хаберландт так описывал одну из лазающих пальм – ротангу (Calamus rotang): «Это растение имеет целый аппарат хватания. В случае если оказаться в поле его действия, то можно остаться без головного убора и даже одежды, с многочисленными царапинами на телœе». Черешки грациозных и сложных листьев ротанга имеют длинные, до 1–2 м, исключительно гибкие и эластичные отростки, усеянные многочисленными твердыми и к тому же полуподвижными шипами, каждый из которых представляет собой согнутый и наклоненный назад крючок-зацепку. Любой лист пальмы снабжен таким наводящим страх крючкообразным шипом, не так-то просто расстающимся с тем, что зацепилось за него. Предел упругости крюка, состоящего почти целиком из прочных лубяных волокон, чрезвычайно высок.

Прочно закрепившись с помощью листьев на нескольких стоящих рядом деревьях, совершенно гладкий змеевидный ствол ротанга, подобно вьюну, ползет вверх, продирается сквозь кроны деревьев и поднимается над ними. Дальше ему дороги нет: напрасно его побеги будут искать опору в воздухе. И тогда они под тяжестью собственного веса начинают скользить вниз, до тех пор, пока не зацепятся за какую-нибудь новую подпорку, по которой вновь поднимаются вверх. Создается впечатление, что побеги, словно змеи, расползаются по сторонам в поисках новой опоры. В дебрях влажных тропических лесов встречаются ротанги с общей длиной ствола 180 м, а иногда даже до 300 м!

Но способностью к лазанию и цеплянию обладает не только гигант-ротанᴦ. Технически совершенен механизм лазания у многих тыквенных. У них есть специальные органы поиска и захвата и хитроумные приспособления для осязания и регулирования. Вот, к примеру, широко распространенная в тропиках Азии и культивируемая также в тропической части Африки и Америки восковая тыква (Benincasa hispida). Ее вытянутые плоды могут достигать 2 м в длину и весить более 30 кᴦ. Белую мякоть плодов едят, используют в кондитерской промышленности, маринуют, а из воскоподобного вещества, покрывающего плод, делают свечи. У восковой тыквы есть специальные хватательные органы – усики, которые растут сначала строго вверх, а потом каждый изгибается до горизонтального положения и начинает совершать круговые движения по часовой стрелке. Длина усика бенинказы составляет 15–20 см, у некоторых других тропических тыквенных – до 1 м, а у 50-метровой лианы – тыквы окичобе (Cucurbita okeechobeensis) – и более. Найдя опору, усик, вращаясь, обвивает ее, образуя прочное подпружинœенное соединœение.

Усики умеют определять, где можно, а где нельзя закрепиться. Не только бенинказа, но и другие тыквенные игнорируют, к примеру, стеклянную палочку, так как на ее гладкой и скользкой поверхности невозможно как следует укрепиться, и продолжают искать шероховатые поверхности. В случае если усик не справляется со своей задачей, судьба его печальна – он отмирает, а растение забирает заключенные в нем нужные вещества. Природа – строгий и рациональный изобретатель и не допускает создания ошибочных конструкций. Зато усики, выполнившие свою миссию, получают добавочный материал для совершенствования опоры, делая ее еще более прочной и легкой.

Библиографический список

Биологический энциклопедический словарь. – М., 1989.

Жизнь растений. Т.6. – М., 1982.

Патури Ф. Растения – гениальные инженеры природы. – М., 1979.

Трайтак Д.И. Книга для чтения по ботанике. – М., 1978.

1 О панданусах см. «Биология» № 26/1999.

2 Предполагается, что туда они были в свое время завезены человеком. – Прим. ред.


Гениальные архитекторы природы - 2020 (c).
Яндекс.Метрика