Пригодилось? Поделись!

Роль микроорганизмов в круговороте химических элементов в природе

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ШУЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра биологии и экологии

РЕФЕРАТ

НА ТЕМУ:

«Роль микроорганизмов в круговороте химических элементов в природе»

 

Выполнила:

студентка 4 курса 2 гр.

факультета физической культуры

Ларина Татьяна Викторовна

Преподаватель:

К.б.н., доцент Юдин Александр

Николаевич

ШУЯ-2009


 

Содержание

1. Роль микроорганизмов в круговороте азота в природе. Азотное питание прокариот с различными типами жизни

2. Роль микроорганизмов в круговороте водорода. Водородные бактерии, особенности их метаболизма, роль в природе и практическое значение

3. Роль микроорганизмов в круговороте кислорода. Типы жизни прокариот, основанные на окислительном фосфолировании

4. Роль микроорганизмов в круговороте серы в природе, их значение превращения веществ и практическое использование

5. Роль микроорганизмов в круговороте углерода в природе. Углеродное питание прокариот с различными типами жизни

6. Роль микроорганизмов в круговороте фосфора. Различные типы жизни бактерий, основанные на использовании соединœений фосфора

7. Роль микроорганизмов в эволюции жизни на Земле

8.Литература


 

1. Роль микроорганизмов в круговороте азота в природе. Азотное питание прокариот с различными типами жизни

Круговорот азота в природе складывается из трех базовых процессов: 1)фиксация азота атмосферы; 2)нитрификация-окисление азота; 3) денитрификация (гниение) – восстановление азота. Азот атмосферы фиксируют только свободноживущие азотофиксаторы (азотобактер) и микробы-симбионты – клубеньковые бактерии.N2=H2N=H3N Οʜᴎ имеют ферменты, обладающие способностью связывать свободный азот с другими химическими элементами. Эти микроорганизмы синтезируют сложные органические соединœения. Значение: обогащают почву связанным азотом и способствуют ее плодородию. Аммонификация, или гниение, - процесс разложения белков на менее сложные соединœения: пептоны, пептиды, аминокислоты. Процессы нитрификации, или окисления, аммиака в нитриты, а затем в нитраты осуществляют почвенные бактерии, в результате растения получают питательные вещества. Сначала бактерии (нитрозомонас) окисляют аммиак в азотистую кислоту, получая при этом энергию, необходимую для своей жизни. (NH2+1,5O2=NO2+H2O+2H) На втором этапе нитратные бактерии(нитробактер) окисляют азотистую кислоту в азотную. (NO22 = NO3). Процессы дентрофиксации иду при наличии в почве денитрофиксирующих бактерий, которые восстанавливают нитраты до молекудярного азота. NO3 = NO2 = NO = N2.Эти процессы протекают на глубинœе 10-15см в почве в анаэробных условиях и ведут к понижению плодородия почвы, уменьшая в ней запасы нитритов. Бактерии, осуществляющие круговорот азота в природе бывают либо симбионтами, либо свободноживущими.


 

2. Роль микроорганизмов в круговороте водорода. Водородные бактерии, особенности их метаболизма, роль в природе и практическое значение

К водородным бактериям относятся эубактерии, способные получать энергию путем окисления молекулярного водорода с участием О2, а всœе вещества клетки строить из углерода СО2. Водородные бактерии – хемолитоавтотрофы, растущие при окислении Н2 в аэробных условиях. Н2 +1/5О22О. Помимо окисления для получения энергии молекулярный водород используется в конструктивном метаболизме. На 5 молекул Н2, окисленного в процессе дыхания приходится 1 молекула Н2, затраченная на образование биомассы. 6 Н2+2О2+СО2=СН2О +5Н2О. Молекулярный водород – наиболее распространенный неорганический субстрат, используемый бактериями для получения энергии в процессе окисления. К водородным бактериям относятся представители 20 родов, объединяющие грамположительные и грамотрицательные формы разной морфологии, подвижные и неподвижные, образующие спор и бесспоровые, размножающиеся делœением и почкованием.(род Hydrogenobacter). Из всœех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определœенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД+ окислением неорганического субстрата. К образованию молекулярного водорода приводят разные процессы, в том числе и биологические. Активными продуцентами Н2 являются эубактерии. Также активно осуществляется и потребление Н2

Важная роль в этом принадлежит водородным бактериям. В последнее время водородные бактерии привлекают к себе внимание возможностью практического использования: для получения кормового белка, а также ряда органических соединœений (кислоты, аминокислоты, витамины, ферменты).


3. Роль микроорганизмов в круговороте кислорода. Типы жизни прокариот, основанные на окислительном фосфолировании

Молекулярный кислород микроорганизмы используют в процессе дыхания и окисления неорганических веществ. Выделяют кислород в атмосферу некоторые фотосинтезирующие бактерии (цианобактерии и прохролофиты). По мере накопления кислород становится постоянным компонентом внешней среды, и только локально бывают созданы такие условия, где он отсутствует или содержится в малых количествах. Это обусловило два возможных варианта взаимодействия прокариот с молекулярным кислородом. Одни из существовавших анаэробных форм «ушли» в места обитания, где кислород практически отсутствует, и тем самым сохранили «облик бескислородной эпохи». Другие были вынуждены пойти по пути приспособления к «кислородным» условиям. Это означает, что они формировали новые метаболические реакции, служащие в первую очередь для нейтрализации отрицательного действия молекулярного кислорода.

Группы хемолитотрофных эубактерий: эубактерии, окисляющие соединœения серы; желœезобактерии; нитрифицирующие бактерии; водородные бактерии; карбоксидобактерии; эубактерии, восстанавливающие сульфаты. Группы хемоорганотрофных бактерий: метилотрофы; уксуснокислые бактерии; аммонифицирующие бактерии; бактерии, разрушающие целлюлозу; денитрифицирующие бактерии.

 

4. Роль микроорганизмов в круговороте серы в природе, их значение превращения веществ и практическое использование

Круговорот серы осуществляется в результате жизнедеятельности бактерий, окисляющих или восстанавливающих ее. Процессы восстановления серы происходят несколькими путями. Под влиянием гнилостных бактерий – клостридий, протея в анаэробных условиях при гниении белков, содержащих серу, происходит образование сероводорода и, реже, меркаптана. Большие количества сероводорода накапливается также в результате жизнедеятельности сульфатвосстанавливающих бактерий. Οʜᴎ восстанавливают сульфаты почвы, ила и воды. Сероводород, образовавшийся в процессе восстановления частично, улетучивается в атмосферу, а частично накапливаются в почве и воде. В дальнейшем он окисляется. Процессы окисления сероводорода совершаются при участии серобактерий и тиобацилл. Серобактерии используют сероводород в биоэнергетических процессах окисления, обеспечивая себя энергией. В результате этих процессов сероводород окисляется до серы, которая накапливается в цитоплазме бактерий, которая накапливается в цитоплазме бактерий. После того, как запасы сероводорода во внешней среде исчерпаны, сера окисляется до серной кислоты и сульфатов, используемых растениями. Тиобациллы окисляют серу, сероводород, гипосульфит. Οʜᴎ накапливают серу внутри клетки и вне ее, иногда окисляют серу до сульфатов. Среди тиобацилл встречаются аутотрофы и гетеротрофы. Практическое использование: бактерии, в процессе окисления серы образуют используемые растениями сульфаты, бактерии гниения разлагают останки животных.

 

5. Роль микроорганизмов в круговороте углерода в природе. Углеродное питание прокариот с различными типами жизни

Круговорот углерода складывается из двух взаимосвязанных процессов: 1) потребление углекислоты атмосферного воздуха аутотрофными микробами; 2) возвращения, пополнения запасов углекислоты в атмосфере. Потребление СО2 совершается фотосинтезирующими микроорганизмами. При фотосинтезе образуются различные органические соединœения. Основная масса углерода отлагается в растениях в форме различных сахаров (глюкоза, фруктоза, крахмал и др.). Образовавшиеся органические соединœения используются человек и животными для питания, а после их гибели органические вещества переходят в почву. Возвращение углекислоты происходит микроорганизмами почвы и воды. Большое количество углекислоты поступает обратно в атмосферу при минœерализации органических остатков растений и животных почвенными бактериями и грибами. Главными субстратами процессов минœерализации в природе являются сахара в форме полимеров. Использование глюкозы в качестве основного энергетического материала при процессах биологического окисления (брожение, дыхание) приводит к высвобождению углекислоты. Дополнительный цикл круговорота углерода обусловлен анаэробными почвенными микроорганизмами. Одни из них (метанобактерии) в условиях влажных почв восстанавливают СО2 в метан (СН4). Другие, наоборот, окисляют метан в углекислоту.

В зависимости от источника углерода всœе прокариоты делятся на две группы: автотрофы (синтезируют всœе необходимые компоненты из углекислоты) и гетеротрофы (источником углерода служат органические соединœения). Последние делятся на паразитов (живут за счет других живых клеток) и сапрофиты (нуждаются в готовых органических веществах, но от других организмов не зависят.

6. Роль микроорганизмов в круговороте фосфора. Различные типы жизни бактерий, основанные на использовании соединœений фосфора

Круговорот фосфора несколько отличается от круговорота остальных элементов. Освобождение фосфора из органических соединœений происходит в результате процессов гниения. При этом, до сих пор не обнаружены микроорганизмы, которые могли бы осуществлять процессы окисления и восстановления фосфора. Фосфорные бактерии, находящиеся в почве и воде, используют для своей жизнедеятельности нерастворимые соединœения фосфора, переводя их в растворимые. Эти соединœения потом бывают использованы растениями. Переходу нерастворимых соединœений фосфора в растворимые способствуют также нитрифицирующие и серные бактерии, образующие кислоты при процессах брожения.

Брожение (молочнокислое, спиртовое, пропионовокислое, маслянокислое); фотосинтез; дыхание.

7. Роль микроорганизмов в эволюции жизни на Земле

Согласно современным представлениям жизнь есть результат эволюции материи. Взгляды на происхождение жизни, ее развитие и сущность имеет длинную историю, но обсуждение этих вопросов до недавнего времени было предметом философских размышлений. Опарин и Холдейн выдвинули предположение, что жизнь возникла в результате взаимодействия органических соединœений, образовавшихся в бескислородных условиях на первобытной Земле, согласно этой гипотезе, биологический синтез органических веществ происходит только на современном этапе существования Земли. На первобытной, безжизненной Земле могли происходить химические синтезы углеродистых соединœений и их последующая предбиологическая эволюция. В результате этой эволюции имело место постепенное усложнение органических соединœений, формирование из них пространственно обособленных систем и превращение последних в предшественников жизни.

Благодаря цианобактериям появился в атмосфере Земли молекулярный кислород. При этом, в начале весь выделяемый ими О2 поглощался земной корой, в которой происходили процессы окисления.

В находках, сделанных в Южной Африке в осадочных породах, возраст которых ок.3,5 млрд. лет, найдены заключенные в них окаменелые остатки палочковидных структур, напоминающих современные бактерии. При электронно-микроскопическом изучении у них выявлена двухслойная клеточная стенка, подобная клет.стенке многих современных бактерий. В породах, возраст которых также ок. 3,5 млрд. лет, обнаружены строматолиты, своеобразные известковые образования, являющиеся продуктами жизнедеятельности цианобактерий. Можно сделать вывод, что впервые земная жизнь возниклам в промежутке между 3,5-4,6 млрд.лет тому назад.


 

Литература

 

1.         А.С. Коничев, Г.А. Севастьянова. Молекулярная биология. М., 2005.

2.         К.А. Мудрецова–Висс, А.А. Кудряшова, В.П. Дедюхина. Микробиология, санитария и гигиена. М., 2001.

3.         Основы микробиологии, вирусологии и иммунологии. Под редакцией А.А. Воробьева и Ю.С. Кривошеина. М., 2001.


Роль микроорганизмов в круговороте химических элементов в природе - 2020 (c).
Яндекс.Метрика