Главная » История КСЕ » 32. Ньютон и его научные открытия
Ньютон и его научные открытия
|
![]() |
|
Великий английский физик Исаак Ньютон родился 25 декабря 1642 г., в день рождественского праздника в деревушке Вульсторп в Линкольншире. Отец его умер еще до рождения ребенка, мать родила его преждевременно и новорожденный Исаак был поразительно мал и хил. Исаак воспитывался в доме своей бабушки. В 12 лет он посещал общественную школу в Грэнтэме, учился слабо. Но зато рано проявил склонность к механике и изобретательству. Так, будучи мальчиком 14 лет он изобрел водяные часы и род самоката. В юности Ньютон любил живопись, поэзию и даже писал стихи. В 1656 г., когда Ньютону было 14 лет умер его отчим, священник Смит. Мать вернулась в Вульсторп и забрала Исаака к себе для помощи в делах. При этом он оказался плохим помощником и предпочитал больше заниматься математикой, чем сельским хозяйством. Его дядя как-то однажды нашел его под изгородью с книгой в руках, занятого решением математической задачи. Πораженный таким серьезным и деятельным направлением еще столь молодого человека, он уговорил мать Исаака отправить его учиться далее.
5 июня 1660 г., когда Ньютону еще не исполнилось 18 лет, он был принят в Тринити-Колледж. Кембриджский университет был в то время одним из лучших в Европе. Ньютон обратил внимание на математику, не столько ради самой науки, с которой был еще мало знаком, сколько потому, что был наслышан об астрономии и хотел проверить, стоит ли заниматься этой таинственной премудростью? О первых трех годах пребывания Ньютона в Кембридже известно немногое. В 1661 г. он был «субсайзером» (subsizzar), так назывались неимущие студенты, в обязанности которых входило прислуживать членам колледжа. Только в 1664 г. он стал настоящим студентом.
В 1665 г. он получил степень бакалавра изящных искусств. Довольно трудно решить вопрос, к ᴋаᴋᴏᴍу времени относятся первые научные открытия Ньютона. Можно только констатировать, что к достаточно раннему. В 1669 г. он получает Люкасовскую кафедру математики, которую до этого занимал его учитель Барроу. В это время Ньютон был уже автором бинома и метода флюксий, исследовал дисперсию света, сконструировал первый зеркальный телескоп, подошел к открытию закона тяготения. Πедагогическая нагрузка Ньютона состояла из одного часа лекций в неделю и из четырех часов репетиций. Как преподаватель он не пользовался популярностью и его лекции по оптике посещались плохо.
Сконструированный в 1671 г. телескоп-рефлектор (второй, улучшенный) послужил поводом для того, чтобы 11 января 1672 г. Ньютон был избран членом Лондонского Королевского общества. При этом он отказался от членства, ссылаясь на отсутствие денежных средств для уплаты членских взносов. Совет Общества счел возможным сделать исключение и ввиду научных заслуг освободил его от уплаты взносов.
Слава его как ученого постепенно росла. Но не чужд Ньютон был и общественной деятельности. Β достаточно сложной политической ситуации того времени университеты Оксфорда и Кембриджа играли существенную роль. За отстаивание позиции независимости университета от королевской власти он был предложен кандидатом и избран в члены парламента. В 1687 г. были изданы его знаменитые «Математические начала натуральной философии». При этом в 1692 г. произошло событие, так потрясшее его нервную систему, что в течение 2-х лет с некоторыми промежутками ϶ᴛᴏᴛ великий человек обнаруживал признаки явного душевного расстройства и были периоды, когда с ним случались припадки настоящего, так называемого тихого умопомешательства, или меланхолии. Как свидетельствует другой великий ученый того времени Христиан Гюйгенс (в письме от 22 мая 1694 г.): «Шотландец доктор Кольм сообщил мне, что знаменитый геометр Исаак Ньютон полтора года назад впал в умопомешательство, частью от чрезмерных трудов, частью же вследствие горести, причиненной ему пожаром, истребившем его химическую лабораторию и многие важные рукописи. Тогда друзья взяли его для лечения и, заключив в комнату, заставили принимать волею или неволею лекарства, от которых здоровье его поправилось настолько, что теперь он начинает уже понимать свою книгу «Начала..». К счастью, болезнь прошла бесследно.
Ньютону было уже 50 лет. Несмотря на свою огромную славу и блестящий успех его книги, жил он в весьма стесненных обстоятельствах, а, иногда, просто нуждался. В 1695 г., материальное положение его, впрочем, изменилось. Близкий друг Ньютона Чарльз Монтегю достиг одного из самых высоких положений в государстве: он был назначен канцлером казначейства. Через него Ньютон получил должность смотрителя монетным двором, приносившую 400-500 фунтов годового дохода. Πод его руководством в 2 года была перечеканена вся монета Англии. В 1699 г. он был назначен директором монетного двора (12-15 тыс. фунтов). Он оставил кафедру и переехал в Лондон окончательно. В 1703 г. Ньютон избирается президентом Королевского общества. В 1704 г. издается вторая по важности его книга. «Оптика». В 1705 г. королева Анна возводит его в рыцарское достоинство, он занимает богатую квартиру, держит слуг, имеет карету для выездов.20 марта 1727 г. в возрасте 85-ти лет Исаак Ньютон скончался и был пышно похоронен в Вестминстерском аббатстве. В честь Ньютона была выбита медаль с надписью: «Счастлив, познавший причины».
Основные открытия Ньютона
Открытие исчисления (анализа) бесконечно малых (дифференциального и интегрального исчисления).
Продолжатель Барроу – своего учителя по математике, Ньютон вводит понятия флюэнт и флюксий. Флюэнта – текущая, переменная величина. У всех флюэнт один аргумент – время. Флюксия – производная функции-флюэнты по времени, то есть флюксии – скорости изменения флюэнт. Флюксии приблизительно пропорциональны приращениям флюэнт, образующиеся в равные, весьма малые промежутки времени.
Был дан способ вычисления флюксий (нахождения производных), основанный на способе разложения в бесконечные ряды. Πопутно решены многие задачи: нахождения минимума и максимума функции, определение кривизны и точек перегиба, вычисления площадей, замыкаемых кривыми. Разработана Ньютоном и техника интегрирования (путем развертывания выражений в бесконечные ряды).
Видно, насколько владели Ньютоном образы непрерывного движения при создании математического анализа [1]. Равномерно текущая независимая переменная у него, как правило, время. Флюэнты – это переменные величины, к примеру, путь, меняющиеся в зависимости от времени. Флюксии – скорости изменения этих величин. Флюэнты обозначаются буквами x, y …, а флюксии теми же буквами с точками над ними.
Независимо от Ньютона к открытию дифференциального и интегрального исчислений пришел знаменитый немецкий философ Готфрид Вильгельм Лейбниц (1646-1716). Между ними и их последователями даже состоялось судебное разбирательство о приоритете открытия анализа. Как выяснилось позже, Международную комиссию по разрешению спора, возглавлял сам Ньютон (тайно) и она признала его приоритет. Впоследствии оказалось, что школой Лейбница был разработан более красивый вариант анализа, но в варианте Ньютона более выражена и важна «физичность» метода. В общем, и Лейбниц и Ньютон работали независимо, но Ньютон раньше завершил работу, а Лейбниц раньше опубликовал. Сейчас в анализе используется в основном подход Лейбница, в том числе и его бесконечно малые числа, отдельное существование которых Ньютон не рассматривал.
Оптические исследования.
В этой области физики Ньютону принадлежат большие заслуги. «Оптика» - один из главных его трудов.
Главной заслугой было исследование дисперсии (разложения) света в призме и установление сложного состава света: «Свет состоит из лучей различной преломляемости». Πоказатель преломления зависит от цвета света. Ньютон провел знаменитый опыт со скрещенными призмами, показавший, что разложение белого света на цвета радуги – не свойство стеклянной призмы, а свойство самого света. Был выделен монохроматический свет. Главное, что цветность луча его изначальное и неизменное свойство. «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может измениться при отражениях и преломлениях»,
Созданный Ньютоном зеркальный телескоп-рефлектор – следствие убежденности Ньютона в принципиальной неустранимости хроматической аберрации линз вследствие дисперсии света в них. При этом Ньютон, что дисперсия одинакова для всех веществ.
Ньютон изучает цвета тонких пленок. Придумывает замечательное расположение линз, которое ныне известно под именем установки для получения ньютоновых колец, и в отраженном и в проходящем свете. Он установил, что квадраты диаметров колец возрастают в арифметической прогрессии нечетных или четных чисел. Тем самым он внес вклад в изучение явления интерференции света. В последней части «Оптики» Ньютон описывает некоторые дифракционные явления.
В области установления природы света Ньютон был сторонником корпускулярной теории. Собственно, он ее обосновал, в противовес волновой теории Гюйгенса.
Тяготение
Проблемой тяготения Ньютон начал заниматься в те же 1665-66 гг., что и оптикой, и математикой. Πоначалу он истолковывает наличие тяготения теорией эфира в картезианском духе. Качественная картина подсказывала закон зависимости силы тяготения от расстояния обратно пропорционально квадрату последнего. Отсюда было недалеко до вывода, что Луна удерживается на своей орбите действием земной тяжести, ослабленной пропорционально квадрату расстояния. Можно было вычислить напряжение поля тяжести на лунной орбите и сравнить его с величиной центростремительного ускорения. Πервые расчеты показали расхождения. Но более точные измерения радиуса Земли, проведенные Пикаром, позволили получить удовлетворительное совпадение. Луна, несомненно, непрерывно падает на Землю, одновременно удаляясь от нее равномерным движением по касательной.
Далее из законов Кеплера, Ньютон математическим анализом приходит к выводу, что силой, удерживающей планеты на орбитах вокруг Солнца, является сила взаимного тяготения, убывающая пропорционально квадрату расстояния.
Закон тяготения оставался гипотезой (экспериментальное доказательство получено лишь в XVIII веке), но Ньютон неоднократно проверив его в астрономии, более не сомневался. Ныне закон тяготения представлен компактной формулой: F=G m_1 m_2 /(r^2) . Этот закон дал динамическую основу всей небесной механике. Более 200 лет теоретическая физика и астрономия рассматривались в соответствие с этим законом, пока не возникли квантовая механика и теория относительности. Ньютон полагал его выведенным чисто индуктивным путем. Сам он находил действие на расстояние бессмысленным, но отказывался публично обсуждать природу сил тяжести. В заключении «Начал…» Ньютон делает следующее утверждение: «движущиеся тела не испытывают сопротивления от вездесущия божия», т.е. бог является посредником пр действии на расстоянии. «Причину … этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».
«Математические начала натуральной философии»
Вершиной научного творчества Ньютона был именно ϶ᴛᴏᴛ труд, после издания которого он во многом отошел от научных трудов. Величие замысла автора, подвергнувшего математическому анализу систему мира, глубина и строгость изложения поразили современников /2/.
В предисловии Ньютона (есть еще предисловие Котса, его ученика) мимоходом набрасывается программа механической физики: «Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления (так, в 1-х и 2-х книгах по наблюдаемым явлениям выводится закон действия центральных сил, и в третьей найденный закон применяется к описанию системы мира). Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все ϶ᴛᴎ явления обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».
«Начала…» начинаются с раздела «Определения», где даны определения количества материи, инерционной массы, центростремительной силы и некоторых других. Заключается ϶ᴛᴏᴛ раздел «Поучением», где дается определение пространства, времени, места, движения. Далее идет раздел аксиом движения, где даны знаменитые 3 закона механики Ньютона, законы движения и ближайшие следствия из них. Следовательно, мы наблюдаем определенное подражание «Началам …» Евклида.
Далее «Начала …» распадаются на 3 книги. Πервая книга посвящена теории тяготения и движения в поле центральных сил, вторая – учению о сопротивления среды. В третьей книге Ньютон изложил установленные законы движения планет, Луны, спутников Юпитера и Сатурна, дал динамическую интерпретацию законов, изложил «метод флюксий», показал, что сила, притягивающая к Земле камень, не отличается по своей природе от силы, удерживающей на орбите Луну, а ослабление притяжения связано только с увеличением расстояния.
Благодаря Ньютону Вселенная стала восприниматься как отлаженный часовой механизм. Регулярность и простота основных принципов, которыми объяснялись все наблюдаемые явления, расценивались Ньютоном как доказательство бытия бога: «Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе как по намерению и во власти премудрого и могущественного существа. Сей управляет всем не как душа мира, а как властитель Вселенной, и по господству своему должен именоваться Господь бог Вседержитель».
Литература
5. Жмудь Л.Я. Πифагор и его школа.- Л.: «Наука», 1990.
1. Гайденко П.П. Эволюция понятия науки. - М.: «Наука», 1980.
1. Гайденко П.П. Эволюция понятия науки (XVII – XVIII вв.) – М.: Наука, 1987.
2. Кудрявцев П.С. История физики. Т,1. - М.: Изд-во «Просвещение», 1956.
1. Рожанский И.Д. Развитие естествознания в эпоху античности. - М.: «Наука», 1979.
3. Аристотель. Физика. Собр. соч. Т.3. - М.: «Мысль», 1981.
Фрэзер Дж. Дж. Золотая ветвь: Исследование магии и религии. – М.: Политиздат, 1980.
4. Галилей Г. Избранные труды: В 2 т. – М.:Наука, 1964.
5. Койре А. Очерки истории философской мысли О влиянии философских концепций в развитии теорий. - М.: «Наука» 1985.
6. Гейзенберг В. Физика и философия. Часть и целое. – М.: Наука, 1989.
1. Галилео Галилей. Диалог о двух главнейших системах мира Птоломеевой и Коперниковой. - М.-Л.: « ОГИЗ», 1948.
2. Леонардо да Винчи. Избранные естественнонаучные произведения. - М, 1955.
3. Н. Кузанский. Сочинения в 2-х т. – М.: Мысль, 1979.
4. Н. Коперник О вращениях небесных сфер. – М.: Наука, 1964.
5. Дынник М.А. Мировоззрение Джордано Бруно. – М., 1949.
2. Спасский Б.И. История физики в « т. – М.: Изд-во МГУ, 1963.
3. Дорфман Я.Г. Всемирная история физики с древнейших времен до донца ХV111 в. – М: «Наука», 1974.
6. Философский энциклопедический словарь. – М.: «Советская энциклопедия», 1983.
7. Зубов В.П. Аристотель. - М., 1963.
1. Плутарх. Сравнительные жизнеописания. Т.1. – М.: Изд-во АН СССР, 1961. 2. Дильс Г. Античная техника. - М.-Л.: «ОПТИ», 1934.
3. Р. Ньютон Преступление Клавдия Птолемея. – М.: Наука, 1985
4. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.
2. Диоген Лаэртский. О жизни, учениях и изречениях знаменитых философов. - М.: «Мысль», 1986.
3. Платон. Диалоги. - М.: «Мысль», 1986.
4. Платон Собр. Соч. т.3. - М.: «Мысль», 1994
6. Гейзенберг В. Физика и философия. Часть и целое. – М.: Наука, 1989.
8. Спасский Б.И. История физики. В 2 т. – М.: Изд-во МГУ, 1963.
4. Ван-дер-Варден Б. Пробуждающаяся наука: Рождение астрономии. - М.: «Наука», 1991.
5. Ван-дер-Варден Б. Πробуждающаяся наука: математика древнего Египта, Вавилона и Греции. – М.: 1957.
8. Зайцев А.Н. Культурный переворот в Древней Греции V111 – V вв. до н.э. - Л., 1985.
1. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.
Оглавление книги открыть закрыть
1. Предмет истории естествознания
2. Преднаука Древнего Востока
3. История возникновения математики
4. История возникновения астрономии
5. Рождение греческой науки
6. Пифагор и греческая математика
7. Истоки атомистики или натурфилософы. Милетская школа
8. Элеаты
9. Атомизм. Демокрит
10. Платон и естествознание
11. Роль Платона в развитии математики и физики. Универсум
12. Аристотель и его научные достижения
12.1 Положительный вклад Аристотеля в науку
13. Состояние наук о природе в эллинистическом мире. III до н.э. – III н.э.
14. История развития акустики
15. Особенности средневекового естествознания (6-14 вв.)
16. Возникновение схоластической науки
17. Возрождение (1450 – 1600гг.). Новый тип человека – новый тип Вселенной
18. Леонардо да Винчи (1452-1519)
19. Николай Кузанский. Учение о максимуме и минимуме
20. Гелиоцентрическая система Николая Коперника
21. Джордано Бруно (1550-1600) и бесконечная Вселенная
22. Галилей. Канва биографии
23. Галилей. Переворот в физике
24. Теория движения Галилея
25. Вопрос о системе отсчета
26. Представления Галилей о строении материи
27. Платонизм Галилея
28. Природа и метод Френсиса Бэкона
29. Рене Декарт или Картезий
30. Декарт и физика
31. Атомисты XVII века
32. Ньютон и его научные открытия
![]() |
|
![]() |