Пройти Антиплагиат ©


Главная » Микробиология » 17.1 Брожение в клетках



Брожение в клетках

Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная. Уникализировать текст 



Брожение основано на гликолитическом пути распада углеводов. Различают: гомоферментативное молочнокислое (ГФМ), спиртовое, пропионовое, маслянокислое, ацетонобутиловое.
Брожение – это эволюционно самый древний и примитивный путь получения энергии бактериальной клеткой. АТФ образуется в результате окисления органического субстрата по механизму субстратного фосфорилирования. Брожение происходит в анаэробных условиях. Примитивность брожения объясняется тем, что при брожении происходит расщепление субстрата не полностью, а образованные в ходе брожения вещества (спирты, органические кислоты и т.д.) содержат внутренние запасы энергии.
Количество выделенной энергии при брожении незначительно 1 г/моль глюкозы эквивалентен2 – 4 молекулам АТФ. Микроорганизмы бродящего типа вынуждены интенсивнее збраживать субстрат, чтобы обеспечить себя энергией. Основная проблема брожения – решение донорно-акцепторных связей. Донорами электронов являются органические субстраты, а акцептором электронов, который определяет судьбу брожения представляет основную задачу. Конечный продукт брожения дает название виду данного процесса.

Химизм процесса брожения


В процессе брожения в условиях анаэробиоза в центре находится проблема выработки энергии при расщеплении углеводов. Основным механизмом является гликолитический путь распада (Эмбдена – Мейергоффа – Парнаса, гексозо-дифосфатный путь). Этот путь наиболее распространен, существую 2 гликолитических пути, которые встречаются в меньшей степени: окислительный пентозо-фосфатный путь (Варбурга – Диккенса – Хорекера), путь Энтнера – Дударова (КДФГ-путь).
Следует обратить вимание, что все эти механизмы нельзя рассматривать как брожение, так как они лежат в основе дыхания. Брожение начинается тогда, когда происходит утилизация оторвавшегося от субстрата протона или электрона и присоединения на акцептор.
ГЛИКОЛИЗ
Глюкоза под действием гексаминазы фосфорилируется в положении 6 – превращается в глюкозо-6-фосфат – метаболически более активную форму глюкозы. Донором фосфата выступает молекула АТФ.Глюкоза-6-фосфат изомеризуется в фруктозо-6-фосфат. Реакция обратима, уровень присутствия 2 веществ в зоне реакции одинаков.Фруктоза-6-фосфат присоединяет фосфатную группу к первому атому С и превращается в фруктоза-1,6-дифосфат. Реакции идёт с затратой энергии АТФ и катализируется фруктозо-1,6-дифосфат альдолазой (основной регуляторный фермент гликолиза).
Фруктозо-1,6-дифосфат расщепляется на 2 фосфотриозы триозофосфатизомеразой. В результате образуются 2 триозы:фосфодиоксиацетон и 3-фосглицеральдегид (3-ФГА). Эти 2 триозы могут изомеризоваться одна в другую и проходить трансформацию до пирувата по одинаковому механизму. Это восстановительный этап (идёт с выработкой энергии).
 
 
 
Гликолиз
Гексокиназа
Глюкозо-6-фосфатизомераза
6-Фосфофруктокиназа
Альдолаза
Триозофосфатизомераза
Гліцеральдегидфосфатдегидрогеназа
Фосфоглицераткиназа
Фосфоглицеромутаза
Енолаза
Пируваткиназа
Произошло образование 3-ФГК. Теперь можно подвести некоторые итоги. Клетка на этом этапе "вернула" свои энергетические затраты: 2 молекулы АТФ были затрачены и 2 молекулы АТФ синтезировались на 1 молекулу глюкозы. На этом же этапе в реакции окисления 3-ФГА до 1,3-ФГК и образования АТФ имеет место первое субстратное фосфорилирование. Энергия освобождается и запасается в макроэргических фосфатных связях АТФ в процессе перестройки сбраживаемого субстрата при участии ферментов. Первое субстратное фосфорилирование носит еще название фосфорилирования на уровне 3-ФГА. После образования 3-ФГК фосфатная группа из третьего положения переносится во второе. Далее происходит отщепление молекулы воды от второго и третьего атомов углерода 2-ФГК, катализируемое ферментом энолазой, и образуется фосфоенолпировиноградная кислота. В результате происшедшей дегидратации молекулы 2-ФГК степень окисления ее второго углеродного атома увеличивается, а третьего — уменьшается. Дегидратация молекулы 2-ФГК, приводящая к образованию ФЕП, сопровождается перераспределением энергии внутри молекулы, в результате чего фосфатная связь у второго углеродного атома из низкоэнергетической в молекуле 2-ФГК превращается в высокоэнергетическую в молекуле ФЕП. Молекула ФЕП становится донором богатой энергией фосфатной группы, которая переносится на АДФ с помощью фермента пируваткиназы. Таким образом, в процессе превращения 2-ФГК в пировиноградную кислоту имеет место высвобождение энергии и запасание ее в молекуле АТФ. Это второе субстратное фосфорилирование. В результате внутримолекулярного окислительно-восстановительного процесса одна молекула и донирует и акцептирует электроны. В процессе второго субстратного фосфорилирования образуется еще молекула АТФ; в итоге общий энергетический выигрыш процесса составляет 2 молекулы АТФ на 1 молекулу глюкозы. Такова энергетическая сторона процесса гомоферментативного молочнокислого брожения. Энергетический баланс процесса : С6+2АТФ=2С3+4 АТФ+2НАДФ∙Н2
 

ГОМОФЕРМЕНТАТИВНОЕ МОЛОЧНО-КИСЛОЕ БРОЖЕНИЕ


Осуществляется молочно-кислым бактериями. Которые расщепляют углеводы по гликолитическому пути с последним образованием из пирувата молочной кислоты. У ГФМК- бактерий проблема донорно-акцепторой связи решается самым простым путём – этот вид брожения рассматривают как эволюционно самый древний механизм.
В процессе брожения пировиноградная кислота восстанавливается Н+ оторвавшимся от глюкозы. На пируват сбрасывается Н2 с НАДФ∙Н2. В результате чего образуется молочная кислота. Энергетический выход составляет 2 молекулы АТФ.
Молочно-кислое брожение осуществляют бактерии рода: Streptococcus, Lactobacillus,Leuconostoc.Все они Г+ ( являются палочками или кокками) неспорообразующие (Sporolactobacillus образуют споры). По отношению к кислороду молочно-кислые бактерии относятся к аэротолерантным, являются строгими анаэробами, но способны существовать в атмосфере кислорода. Они имеют ряд ферментов, которые нейтрализуют токсическое действие кислорода (флавиновые ферменты, негемовая каталаза, супероксиддисмутаза). МКБ не могут осуществлять дыхание, так как нет дыхательной цепи. В связи с тем, что природа обитания МКБ богата на факторы роста, в процессе эволюции они стали метаболическими инвалидами и утратили способность синтезировать в достаточном количестве факторы роста, поэтому в процессе культивирования они
Гомоферментативное молочнокислое брожение: Ф1 — гексокиназа; Ф2 — глюкозофосфатизомераза; Ф3 — фофсофруктокиназа; Ф4 — фруктозо-1,6-дифосфатальдолаза; Ф5 — триозофосфатизомераза; Ф6 — 3-ФГА-дегидрогеназа; Ф7 — фофсоглицерокиназа; Ф8 — фосфоглицеромутаза; Ф9 — енолаза; Ф10 — пируваткиназа; Ф11 — лактатдегиброгеназа (по Dagley, Nicholson, 1973)
 

нуждаются в добавлении витамиов, аминокислот (овощные, растительные экстракты).
МКБ могут использовать лактозу, которая под действием β-галактозидазы в присутствии молекул воды расщепляется на D-глюкозц и D-галактозу. Впоследствии D-галактоза фосфорилируется и трансформируется в глюкозо-6-фосфат.
МКБ – мезофиллы с оптимальной температурой культивирования 37 - 40ºС. При 15ºС большинство из них не растут.
Способность к антагонизму связана с тем, что в процессе метаболизма накапливается молочная кислота и другие продукты, которые угнетают рост других микроорганизмов. Кроме того накопление молочной кислоты в культуральной жидкости приводит к резкому снижению рН, что угнетает рост гнилостных микрооргаизмов, а сами МКБ могут выдерживать рН до 2.
МКБ нечувствительны к многим антибиотикам. Это позволило использовать их в качестве продуцентов пробиотических препаратов, которые могут использоваться как препараты , сопровождающие при антибиотико-терапии (способствуют восстановлению микрофлоры кишечника, угнетаемой антибиотиками).
Экология МКБ. В природе встречаются там, где много углеводов: молоко, поверхность растений, пищевой тракт человека и животных. Патогенных форм нет.
 

СПИРТОВОЕ БРОЖЕНИЕ


В основе лежит гликолитический путь. В спиртовом брожении происходит усложнение решения донорно-акцепторной связи. Сначала пируват с помощью пируватдекарбоксилазы, ключевого фермента спиртового брожения, декарбоксилируется до ацетальдегида и CO2:
CH3-CO-COOH ® CH3-COH + CO2 .
Особенность реакции заключается в ее полной необратимости. Образовавшийся ацетальдегид восстанавливается до этанола с участием НАД+-зависимой алкогольдегидрогеназы:
CH3-COH + НАД-H2 ® CH3-CH2OH + НАД+
Донором водорода служат 3-ФГА (как и в случае молочнокислого брожения).
Процесс спиртового брожения суммарно можно выразить следующим уравнением:
C6H12O6 + 2ФН + 2АДФ ® 2CH3-CH2OH + 2CO2 + 2АТФ +2H2O.
Спиртовое брожение широко распространенный процесс получения энергии как у Про-, так и у Эукариотов. У Прокариотов встречается как у Г+ так и у Г-. Промышленное значение имеет микроорганизм Zymomonas mobilies ( пульке из сока агавы), но в основе брожения лежит не гликолиз, а путь Энтнера – Дудорова или КДФГ-путь.
Основные продуценты спирта – дрожжи (пивоварение, виноделие, ферментные препараты, витамины группы В, нуклеиновые кислоты, белково-витаминные концентраты, пробиотические препараты).
 

ПРОПИОНОВОЕ БРОЖЕНИЕ


В пропионовокислом брожении мы имеем дело с реализацией третьей возможности превращения пирувата — его карбоксилированием, приводящим к возникновению нового акцептора водорода — ЩУК. Восстановление пировиноградной кислоты в пропионовую у пропионовокислых бактерий протекает следующим образом . Пировиноградная кислота карбоксилируется в реакции, катализируемой биотинзависимым ферментом, у которого биотин выполняет функцию переносчика CO2. Донором CO2-группы служит метилмалонил-КоА. В результате реакции транскарбоксилирования образуются ЩУК и пропионил-КоА. ЩУК в результате трех ферментативных этапов (аналогичных реакциям 6, 7, 8 цикла трикарбоновых кислот, превращается в янтарную кислоту.
Следующая реакция заключается в переносе КоА-группы с пропионил-КоА на янтарную кислоту (сукцинат), в результате чего образуется сукцинил-КоА и пропионовая кислота.
Образовавшаяся пропионовая кислота выводится из процесса и накапливается вне клетки. Сукцинил-КоА превращается в метилмалонил-КоА.
В состав кофермента метилмалонил-КоА-мутазы входит витамин B12.
 
Превращение пировиноградной кислоты в пропионовую при пропионовокислом брожении: Ф1 — метилмалонил-КоА-карбоксилтрансфераза; Ф2 — малатдегидрогеназа; Ф3 — фумараза: Ф4 — фумаратредуктаза; Ф5 — КоА-трансфераза; Ф6 — метилмалонил-КоА-мутаза (по Daglev, Nicholson. 1973; Rose. 1971)
 
Энергетический баланс на 1 молекулу глюкозы образуется 2 молекулы пропионовой кислоты и 4 молекулы АТФ.
Бактерии р.Propionibacterium – это Г+ палочки, неспорообразующие, неподвижные, размножаются бинарным делением, являются аэротолерантными микроорганизмами. У них есть механизм защиты от токсического действия кислорода, некоторые могут осуществлять дыхание.
Экология: встречаются в молоке, кишечнике жвачных животных. Промышленный интерес: продуценты В12 и пропионовой кислоты.
 

МАСЛЯНОКИСЛОЕ БРОЖЕНИЕ


При маслянокислом брожении пируват декарбоксилируется и присоединяется к КоА – образуется ацетил-КоА. Далее происходит конденсация: 2 молекулы ацетил-КоА конденсируются с образованием С4-соединения ацето-ацетил-КоА, который выступает акцептором продукции Н2.
 
 
Пути превращения пирувата в маслянокислом брожении, осуществляемом Clostridium butyricum: Ф1 — пируват:ферредоксиноксидоредуктаза; Ф2 — ацетил-КоА-трансфераза (тиолаза); Ф3 — (3-оксибутирил-КоА-дегидрогеназа; Ф4 — кротоназа; Ф5 — бутирил-КоА-дегидрогеназа; Ф6 — КоА-трансфераза; Ф7 — фосфотрансацетилаза; Ф8 — ацетаткиназа; Ф9 — гидрогеназа; Фдок — окисленный; Фд-H2 — восстановленный ферредоксин; ФН — неорганический фосфат
 
Далее С4 соединени проходя через ряд последовательных превращений образует масляную кислоту. Этот восстановительный путь не связан с образованием энергии и создан исключительно для утилизации восстановителя. Параллельно существует вторая окислительная ветвь, которая приводит к образоваию из пирувата уксусной кислоты и на этом участке имеет место субстратное фосфорилирование, что обуславливает синтез АТФ.
Энергетический баланс рассчитать сложно, поскольку направление реакций определяется внешними факторами, а также питательной средой:
1 мол. глюкозы→≈3,3 АТФ
Маслянокислое брожение осуществляют бактерии р.Clostridium – это Г+ палочки, подвижные, спорообразующие (эндоспоры d>dкл), являются исключительно анаэробными культурами. Движение осуществляют за счет перетрихиально расположенных жгутиков. По мере старения клетки теряют жгутики и накапливают гранулёзу (крахмалоподобное вещество). По способности збраживать субстрат разделяются на 2 типа:
сахаролитические (расщепляют сахара, полисахариды, крахмал, хитин);
протеолитические (имеют мощный комплекс протеолитических ферментов, расщепляют белки).
Клостридии осуществляют не только масляно-кислое брожение, но и ацетонобутиловое. Продуктами этого вида брожения на ряду с масляной кислотой и ацетатом могут быть: этанол, ацетон, бутиловый спирт, изопропиловый спирт.

АЦЕТОНОБУТИЛОВОЕ БРОЖЕНИЕ


 
 
Образование нейтральных продуктов при ацетонобутиловом брожении: Ф1 — бутирилальдегиддегидрогеназа; Ф2 — бутанолдегидрогеназа; Ф3 — КоА-трансфераза; Ф4 — ацетоацетатдекарбоксилаза; Ф5 — изопропанолдегидрогеназа; Ф6 — ацетальдегиддегидрогеназа; Ф7 — алкогольдегидрогеназа
 
 
При ацетонобутиловом брожении продуценты в молодом возрасте (логарифмическая фаза роста) осуществляют брожение по типу маслянокислого. По мере снижения рН и накопления кислых продуктов индуцируется синтез ферментов, приводит к накоплению нейтральных продуктов (ацетон, изопропиловый, бутиловый, этиловый спирты). Изучая процесс ацетонобутилового брожения русский ученый Шапошников показал, что оно проходит 2 фазы и в основе 2х фазности процесса лежит связь между конструктивным и энергетическим метаболизмом. Первая фаза характеризуется активным ростом культуры и интенсивным конструктивным метаболизмом, по этому в этот период происходит отток восстановителя НАД∙Н2 на биосинтетические нужды. При затухании роста культуры и переходе ее во вторую фазу уменьшается потребность в конструктивных процессах, что приводит к образоваию более восстановлеых форм – спиртов.
Практическое применение Clostridium:
производство масляной кислоты;
производство ацетона;
производство бутанола.
Бактерии играют огромную роль в природе: осуществляют гниение, анаэробное гниение клетчатки и хитина (некоторые расщепляют пектиновые волокна). Среди Clostridium имеются патогенны (возбудители ботулизма – выделяют крайне опасный экзотоксин; возбудители газовой гангрены; столбняка).
 



Лекция, реферат. Брожение в клетках - понятие и виды. Классификация, сущность и особенности. 2021.

Оглавление книги открыть закрыть

1. Предмет микробиологии. Положение микроорганизмов в природе. Общая характеристика микроорганизмов.
2. История развития микробиологии
3. Грибы
4. Дрожжи как вид грибов
5. Прокариоты
6. Строение бактериальной клетки
7. Капсулы, слизистые слои и чехлы
8. Цитоплазматическая мембрана
9. Внутриклеточные структуры бактерий
10. ДНК
11. Морфологическая дифференцировка бактерий
12. Действие на микроорганизмы физических, химических и биологических факторов
13. Питание микроорганизмов
14. Рост и размножение микроорганизмов
15. Участие микроорганизмов в круговороте веществ в природе
16. Систематика и классификация бактерий
17. ОСОБЕННОСТИ МЕТАБОЛИЗМА В ПРОКАРИОТИЧЕКИХ МИКРООРГАНИЗМАХ
17.1 Брожение в клетках
17.2 Альтеративные механизмы сбраживаия углеводов
18. Фосфорилирование. Типы жизни основанные на фосфорилировании
19. Механизмы фотосинтеза
20. Конструктивный механизм метаболизма фотосинтезирующих бактерий
21. Типы жизни, основанные на окислительном фосфорилировании
22. Цикл трикарбованых кислот
23. Дыхательная цепь
24. Анаэробное дыхание
25. ВИРУСОЛОГИЯ
26. МОРФОЛОГИЯ И СТРУКТУРА ВИРУСОВ
27. МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ ВИРУСОВ И КЛЕТКИ
28. МЕХАНИЗМ ГЕНЕТИЧЕСКОГО И НЕГЕНЕТИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ ВИРУСОВ




« назад Оглавление вперед »
17. ОСОБЕННОСТИ МЕТАБОЛИЗМА В ПРОКАРИОТИЧЕКИХ МИКРООРГАНИЗМАХ « | » 17.2 Альтеративные механизмы сбраживаия углеводов






 

Похожие работы:

Микрофлора сливочного масла

21.10.2010/контрольная работа

Особенности строения клеток бактерий, постоянные и непостоянные компоненты бактериальной клетки и принципы их окраски по Граму. Пропионово-кислое брожение и способы питания микроорганизмов. Санитарная оценка масла по микробиологическим показателям.


 

Учебники по данной дисциплине

Концепции современного естествознания
ЕГЭ по биологии - справочник для подготовки
История КСЕ
Философия биологии
Фармацевтическая микробиология
Зоогигиена и ветеринарная санитария
Биология. Учебник
Биология. Учебник, часть 2
Цитология и гистология лекции