Пройти Антиплагиат ©


Главная » Микробиология » 24. Анаэробное дыхание



Анаэробное дыхание

Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная. Уникализировать текст 



У микроорганизмов очень пластичный метаболизм. Анаэробное дыхание – это процесс, при котором конечным акцептором электроном являетсяне кислород, а другой органический или неорганический субстрат. Неполное окисление – еще один механизм – разновидность аэробного дыхания, но продукты сами по себе богаты энергией, поэтому энергетический выход неполного окисления меньше, чем при аэробном дыхании.
Анаэробное дыхание. В процессе биохимической эволюции возник такой тип метаболизма, который позволил микроорганизмам переносить электрон в дыхательной цепи в безкислородных условиях. В результате такого безкислородного процесса обеспечивался синтез АТФ по механизму окислительного фосфорилирования. Безусловно, что такое анаэробное дыхание позволяло извлекать энергии в гораздо большем объеме , чем при брожении. У анаэробно дышащих микроорганизмов существует ДЦ и ЦТК. В зависимости от природы конечного акцептора ДЦ различают следующие виды:
Энергетический процесс Конечный акцептор электронов Продукты восстановления
Нитратное дыхание и денитрификация NO3–, NO2– NO2–, NO, N2O, N2
Сульфатное и серное дыхание SO42–, S0 H2S
Карбонатное дыхание CO2 ацетат
Фумаратное дыхание фумарат сукцинат
     
К анаэробному дыханию способны не только облигатные анаэробы, но и факультативные микроорганизмы, которые в аэробной среде осуществляют аэробное дыхание, а в анаэробной среде – анаэробное. Так в анаэробной среде у таких микроорганизмов в отсутствии кислорода происходит изменение направления восстановительных эквивалентов (протона, электона и атомарного водорода) с кислородом на из перечисленных акцепторов, так например, микроорганизмы, которые осуществляют нитратное дыхание имеют разветвление дыхательной цепи на уровне цитохрома в:
 

 
Фермент, который перебрасывает электрон (восстановительный эквивалент) на неорганический субстрат – редуктаза.
Нитратное дыхание. При нитратном дыхании 1 из продуктов – нитрит, который накапливается в культуральной жидкости, питьевой воде. Поступление нитритов в организм вызывает заболевание – цианоз. Ионы нитрита связываются с гемоглобином и препятствуют переносу кислорода.
Сульфатное дыхание. Осуществляется сульфатредуцирующими бактериями р. Desulfovibrio и Desulfotomaculum. Эти микроорганизмы – основная группа микроорганизмов, потребляющих Н2S, образуемый в природе и способствуют отложению суьфид минералов в природе. Накопление сероводорода в водоёмах отрицательно влияет на флору и фауну, приводит к их гибели.
Серное дыхание приводит к образованию сероводорода как конечного акцептора дыхательной цепи.
Карбонатное дыхание. Осуществляют архебактерии-метанообразующие. Акцептор электрона – СО2, а окисленный продукт Н2. В качестве супстрата используют навоз и получают биогаз и биоудобрения.
Железное дыхание. Осуществляют почвенные бактерии в анаэробной среде. Соли Fe3+ должны проникнуть внутрь клетки. У этих бактерий есть переносчики – сидерофоры, которые переводят железо в растворимую форму.
Фумаратное дыхание. Осуществляют хемоорганотрофные анаэробные бактурии. Фумарат восстанавливается до сукцината.
 

Неполное окисление


Неполное окисление – исключительно аэробный процесс, АТФ-окислительное фосфорилирование. Конечные продукты неполностью окислены, то есть сами по себе содержат достаточно большой запас энергии ( фумаровая кислота, уксусная кислота) продукты напоминают брожение. Инода процесс называют окислительное брожение. Все микроорганизмы имеют полноценную дыхательную цепь и конечным акцептором является О2
Усксусно-кислое брожение (неполное окисление). Осуществляют уксусно-кислые бактерии- Г-, неспороорбразующие палочки, подвижные за счет перетрихиально или полярно расположенных жгутиков. Есть неподвижные. Строгие (иногда факультативные) аэробы. Объединены в р.Acetomonas (Gluconobacter), Acetobacter. Все микроорганизмы нуждаются в сложных питательных средах, в определенных витаминах. В качестве исходного энергетическоо продукта используют спирты этиловый, глицерол, глюконовый). Переводят их в уксусную кислоту, глицериновую, глюконовую.
Процесс идёт в две стадии:
СН3 – СН2 – ОН + НАД+→СН3СНО+НАД∙Н2
СН3СНО+НАД+ +Н2О→СН3СООН+НАД∙Н2
Ацетомонас – 6 АТФ из 1 молекулы этилового спирта
Ацетобактер – 18 АТФ
Микроорганизмы рода ацетомонас накапливают уксусную кислоту в культуральной жидкости до тех пор, пока в среде есть спирт, который они окисляют. Как только спирт утилизируется полностью из среды, микроорганизмы используют уксусную кислоту как энергетический субстрат , включая ее в ЦТК, который у этих микроорганизмов функционирует полноценно. Процесс утилизации уксусной кислоты до СО2 и Н2О проходит по типу аэробного дыхания.
 

Хемолитотрофные микроорганизмы


В качестве источника энергии используют неорганические вещества. Известно групп Прокариот, которые окисляют 5 элементов : Н, S, N, Fe, C, Sb.
Получеие энергии происходит в результате дыхания, так как конечный акцептор электронов в ДЦ является кислород, и лишь немногие могут получать энергию за счет анаэробного дыхания.
Так как всем необходим Карбон, то подавляющее большинство микроорганизмов-литотрофов являются хемолитотрофами, используют СО2 воздуха, который фиксируется в цепи Кальвина.
Имеют полноценную ДЦ. Разнообразность наблюдается на начальных участках энергетического метаболизма, так как для окисления неорганических соединений, связанных с получением энергии, необходима соответствующая ферментативная система. Используют в качестве доноров электронов неорганические соединения различного окислительно–восстановительного потенциала. Это определяет место включения электрона в ДЦ из окисляемого субстрата.
При окислении Н2 происходит восстановление НАД+ ( первичного акцептора ДЦ), при окислении S, Fe, N, электрон сбрасывается на терминальный участок ДЦ на уровне цитохрома. То что электрон сбрасывается на цитохромы порождает 2 проблемы хемолитотрофных микроорганизмов:
Связана с тем, что получать незначительную порцию энергии в виде АТФ. Эта проблема решена за счет увеличения скорости окисления субстрата.
Включение электрона в терминальной части ДЦ не позволяет микроорганизмам получать восстановитель НАД∙Н2, который необходим для биосинтетических нужд. Эта проблема решена за счет обратного переноса электрона на НАД∙Н2 по ДЦ против электрохимического потенциала. Обратный перенос электрона сопровождается затратой АТФ. Энергия АТФ микроорганизмов используется на биосинтетические процессы, в том числе и на фиксацию СО2 в цикле Кальвина.
  
 



Лекция, реферат. Анаэробное дыхание - понятие и виды. Классификация, сущность и особенности. 2021.

Оглавление книги открыть закрыть

1. Предмет микробиологии. Положение микроорганизмов в природе. Общая характеристика микроорганизмов.
2. История развития микробиологии
3. Грибы
4. Дрожжи как вид грибов
5. Прокариоты
6. Строение бактериальной клетки
7. Капсулы, слизистые слои и чехлы
8. Цитоплазматическая мембрана
9. Внутриклеточные структуры бактерий
10. ДНК
11. Морфологическая дифференцировка бактерий
12. Действие на микроорганизмы физических, химических и биологических факторов
13. Питание микроорганизмов
14. Рост и размножение микроорганизмов
15. Участие микроорганизмов в круговороте веществ в природе
16. Систематика и классификация бактерий
17. ОСОБЕННОСТИ МЕТАБОЛИЗМА В ПРОКАРИОТИЧЕКИХ МИКРООРГАНИЗМАХ
17.1 Брожение в клетках
17.2 Альтеративные механизмы сбраживаия углеводов
18. Фосфорилирование. Типы жизни основанные на фосфорилировании
19. Механизмы фотосинтеза
20. Конструктивный механизм метаболизма фотосинтезирующих бактерий
21. Типы жизни, основанные на окислительном фосфорилировании
22. Цикл трикарбованых кислот
23. Дыхательная цепь
24. Анаэробное дыхание
25. ВИРУСОЛОГИЯ
26. МОРФОЛОГИЯ И СТРУКТУРА ВИРУСОВ
27. МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ ВИРУСОВ И КЛЕТКИ
28. МЕХАНИЗМ ГЕНЕТИЧЕСКОГО И НЕГЕНЕТИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ ВИРУСОВ




« назад Оглавление вперед »
23. Дыхательная цепь « | » 25. ВИРУСОЛОГИЯ






 

Похожие работы:

Маслянокислые бактерии как продуценты кислот

5.06.2009/курсовая работа

Маслянокислое брожение, процесс анаэробного разложения углеводов, пептонов, белков, жиров с образованием различных кислот, в том числе и масляной. Выделение маслянокислых бактерий садовой городской почвы г. Астрахани и изучение их морфологических свойств.

Эволюция планеты Земля

18.11.2009/реферат

Первый экологический кризис – смена анаэробной атмосферы на аэробную. Особенности биосинтеза органических соединений при хемосинтезе. Нюансы фотосинтеза, цикл превращения солнечной энергии в углеводы. Эволюция живых организмов, появление человека.

Основы биохимии

7.12.2010/контрольная работа

Характеристика основных видов рибонуклеиновых кислот. Биологическое значение фосфатидов. Энергетический эффекты гликолиза. Описание аэробной и анаэробной работоспособности человека. Биохимические основы быстроты как качества двигательной деятельности.


 

Учебники по данной дисциплине

Концепции современного естествознания
ЕГЭ по биологии - справочник для подготовки
История КСЕ
Философия биологии
Фармацевтическая микробиология
Зоогигиена и ветеринарная санитария
Биология. Учебник
Биология. Учебник, часть 2
Цитология и гистология лекции