-
Пройти Антиплагиат ©



Главная » Рефераты » Текст работы «Экономика предприятия»


Экономика предприятия

Планирование производства. Суммарная суточная прибыль от производства. Математическая модель задачи. Транспортная задача. Планирование перевозок, чтобы минимизировать суммарные транспортные расходы. Назначение на работы. Планирование портфеля заказов.

Дисциплина: Экономико-математическое моделирование
Вид работы: контрольная работа
Язык: русский
Дата добавления: 7.01.2009
Размер файла: 3789 Kb
Просмотров: 2765
Загрузок: 15

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Экономика предприятия (предмет: Экономико-математическое моделирование) находятся в архиве, который можно скачать с нашего сайта.
Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0)
.

СОДЕРЖАНИЕ

1. Задача №1 «Планирование производства»

2. Задача №3 «Транспортная задача»

3. Задача №4 «Назначение на работы»

4. Задача №2 «Планирование портфеля заказов»

Задача №1 «Планирование производства»

Небольшая фабрика выпускает два типа красок: для внутренних (I) и наружных (Е) работ.

Продукция обоих видов поступает в оптовую продажу. Для производства красок используются два исходных продукта А и В. Максимально возможные суточные запасы этих продуктов составляют 10 и 16 тонн, соответственно. Расходы продуктов А и В на 1 т соответствующих красок приведены в табл. 2.1.

Таблица 2.1

Исходные данные задачи о планировании производства красок

Исходный продукт

Расход исходных продуктов
на 1 т краски, т

Максимально возможный запас, т

краска Е

краска І

А

В

1

2

2

4

10

16

Минимальный суточный спрос на краску для внутренних работ составляет 1 т, а для внешних работ 2 т. Суточный спрос на краску i никогда не превышает спроса на краску Е более чем на 1 т. Кроме того, установлено, что спрос на краску I никогда не превышает 2 т в сутки. Оптовые цены одной тонны красок равны: 3000 руб. для краски Е и 2000 руб. для краски I.

Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации продукции был максимальным?

В нашем случае фабрике необходимо спланировать объем производства красок так, чтобы максимизировать прибыль. Поэтому переменными являются:

Хi -- суточный объем производства краски I и Хе -- суточный объем производства краски Е.

Суммарная суточная прибыль от производства Xi краски I и Xe краски Е равна

Z = 3000*Хe+ 2000*Xi (2.1)

Целью фабрики является определение среди всех допустимых значений Xi и Xe таких, которые максимизируют суммарную прибыль, т. е, целевую функцию Z.

Перейдем к ограничениям, которые налагаются на Xe и Xi. Объем производства красок не может быть отрицательным, следовательно:

Хt, Хi > 0 (2.2)

Расход исходного продукта для производства обоих видов красок не может превосходить максимально возможный запас данного исходного продукта, следовательно:

Хe + 2Xi <= 10 (2.3)

2Xe + Xi <= 16 (2.4)

Кроме того, ограничения на величину спроса на краски таковы:

Xi-Xe <= 1 (2.5)

Xi < 2 (2.6)

Таким образом, математическая модель данной задачи имеет следующий вид:

максимизировать

Z= 300Хe + 2000Xi

при следующих ограничениях:

Xe+2Xi<= 10

2Xe+Xi<= 16

Xi-Xe<=1

Xi<=2

Xi, Xe>=0

Заметим, что данная модель является линейной, т. к. целевая функция 1-ограничения линейно зависят от переменных.

Вводим данные в таблицу Excel.

Покажем формулы

Решим данную задачу с помощью команды Сервис - Поиск решения Excel. Средство поиска решений является одной из надстроек Excel. Если в меню Сервис отсутствует команда Поиск решения, то для ее установки необходимо выполнить команду Сервис, Надстройки, Поиск решения.

Для того чтобы получить максимальный доход надо произвести краски І 1 т., а краски Е 6 т.

Задача №3 «Транспортная задача»

Предположим, что фирма имеет 4 фабрики и 5 центров распределения ее товаров. Фабрики фирмы располагаются в А, Б, В, Г с производственными возможностями 200, 150, 225 и 175 единиц продукции ежедневно, соответственно. Центры распределения товаров фирмы располагаются в 1, 2, 3, 4, 5 с потребностями в 100, 200, 50, 250 и 150 единиц продукции ежедневно, соответственно. Хранение на фабрике единицы продукции, не поставленной в центр распределения, обходится в $0,75 в день, а штраф за просроченную поставку единицы продукции, заказанной потребителем в центре распределения, но там не находящейся, равен $2,5 в день. Стоимость перевозки единицы продукции с фабрик в пункты распределения приведена в табл. 2.6.

Таблица 2.6 - Транспортные расходы

1

2

3

4

5

А

1

2

7

12

1

Б

2

7

9

12

2

В

3

4

6

4

3

Г

7

3

11

3

5

Необходимо так спланировать перевозки, чтобы минимизировать суммарные транспортные расходы.

Поскольку данная модель сбалансирована (суммарный объем произведенной продукции равен суммарному объему потребностей в ней), то в этой модели не надо учитывать издержки, связанные как со складированием, так и с недопоставками продукции. В противном случае в модель нужно было бы ввести:

В случае перепроизводства -- фиктивный пункт распределения, стоимость перевозок единицы продукции в который полагается равной стоимости складирования, а объемы перевозок -- объемам складирования излишков продукции на фабриках

В случае дефицита -- фиктивную фабрику, стоимость перевозок единицы продукции с которой полагается равной стоимости штрафов за недопоставку продукции, а объемы перевозок -- объемам недопоставок продукции в пункты распределения.

Для решения данной задачи построим ее математическую модель. Неизвестными в этой задаче являются объемы перевозок. Пусть Хij -- объем перевозок с i-й фабрики в j-й центр распределения.

Функция цели -- это суммарные транспортные расходы, т. е.

Z=cij*xij (2.22)

Сij-- стоимость перевозки единицы продукции с i-й фабрики j-й центр распределения.

Неизвестные в этой задаче должны удовлетворять следующим ограничениям:

объемы перевозок не могут быть отрицательными;

так как модель сбалансирована, то вся продукция должна быть вывезена с фабрик, а потребности всех центров распределения должны быть полностью удовлетворены.

В результате имеем следующую модель:

минимизировать:

Z=cij*xij (2.23)

при ограничениях:

xij= вj, ,j=[1, 5] (2.24)

xij=ai, i=[1,4], (2.25)

xij>=0, i=[1,4], j= [1,5]. (2.26)

где аi -- объем производства на i-й фабрике, вi -- спрос вj-м центре распределения.

Ввод данных

Формулы

Поиск решения

Минимальная сумма за перевозки груза составляет 2125 грн.

Задача №4 «Назначение на работы»

Четверо рабочих выполнять четыре вида работ. Стоимости выполнения i-м рабочим j-работы приведены в табл. 2.8

Таблица 2.8 - Стоимость выполнения работ

Работа 1

Работа 2

Работа 3

Работа 4

Рабочий 1

1

2

7

12

Рабочий 2

2

7

9

12

Рабочий 3

3

4

6

4

Рабочий 4

7

3

11

3

В этой таблице строки соответствуют рабочим, а столбцы -- работам. Необходимо составить план выполнения работ так, чтобы все работы были выполнены, каждый рабочий был загружен только на одной работе, а суммарная стоимость выполнения всех работ была минимальной. Отметим, что данная задача является сбалансированной, т. е. число работ совпадает с числом рабочих. Если задача не сбалансирована, то перед началом решения ее необходимо сбалансировать, введя недостающее число фиктивных строчек или столбцов с достаточно большими штрафными стоимостями работ.

Пусть переменная xij= 1, если i-м рабочим выполняется j-я работа, и хij= 0, если i-м рабочим не выполняется j-я работа. Тогда модель имеет следующий вид:

минимизировать:

Z=cij*xij (2.27)

при ограничениях:

xij=1, j=[1,4] (2.28)

xij=1, I=[1,4] (2.29)

xij=[0,1], I=[1,4], j=[1,4]. (2.30)

Ввод данных

Формулы

Поиск решения

Минимальная сумма за работы составляет 13 грн.

Задача №2 «Планирование портфеля заказов»

Для получения сплавов А и В используются четыре металла I, II, III и IV, требования к содержанию которых в сплавах А и В приведены в табл. 2.3.

Таблица 2.3 - Требования к содержанию металлов в состава сплавов

Сплав

Требования к содержанию металла

А

Не более 80% металла I

Не более 30% металла II

В

От 40 до 60% металла II

Не менее 30% металла III

Не более 70% металла IV

Характеристики и запасы руд, используемых для производства металлов I, II, III и IV, указаны в табл. 2.4.

Таб. 2.4

Характеристики и запасы руд в задаче об определении состава сплавов

Руда

Максимальный запас, т

Состав, %

Цена,

S/т

1

11

III

IV

Другие компоненты

1

1000

1

3

6

6

10

30

2

2000

2

4

6

3

10

40

3

3000

3

4

3

9

0

50

Цена 1 т. сплава А равна 200 долларов, а 1 т. сплава В -- 210 долларов. Необходимо максимизировать прибыль от продажи сплавов А и В.

Обозначим через х1а, х2а, х3а, х4а и х1в, х2в, х3в, х4в количество I, II, III и IV металлов, используемых для получения сплавов А и В, соответственно. Количество использованной i-я руды обозначим уi I=[1, З].

Тогда математическая модель данной задачи имеет вид:

максимизировать:

Z = 200(х1а+х2а+х3а+х4а) + 210(х1в+х2в+х3в+х4в) -30у1 - 40у2 -

- 50у3 (2.7)

при ограничениях на состав сплавов (на основании данных из табл.):

х1а <=0,8(х1а+х2а+х3а+х4а) (2.8)

х2а <= 0,3 (х1а+х2а+х3а+х4а) (2.9)

х2в <= 0,6(х1в+х2в+х3в+х4в) (2.10)

х2в>=0,4(х1в+х2в+х3в+х4в) (2.11)

х3в>=0,3(х1в+х2в+х3в+х4в) (2.12)

x4 в <=0,7(х1в+х2в+х3в+х4в) (2.13)

на характеристики и состав руды (на основании данных из табл. 1.4):

x1a+x1 в <=0,01y1+0,02y2+0,03y3 (2.14)

x2a+x2 в <=0,03y1+0,04y2+0,04y3 (2.15)

x3a+x3 в <=0,06y1+0,06y2+0,03y3 (2.16)

x4a+x4 в <=0,06y1+0,03y2+0,09y3 (2.17)

а также на диапазоны использования переменных:

xia>=0, xiв >=0, I=[1,4] (2.18)

0<=y1<=1000 (2.19)

0<=y2<=2000 (2.20)

0<=y3<=3000 (2.21)

Ввод данных

Формулы

Поиск решения

Сплавы А и В не выгодно производить так, как получаются убытки.

ЛИТЕРАТУРА

1. И.Я. Лукасевич, Анализ финансовых операций, Москва: Юнити, 1998. - 400 с.

2. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. М.: Финансы: Издат. об-ние "ЮНИТИ", 1999. 527 с.

3. Джеффри Х.Мур, Лари Р. Уэдерфорд Экономическое моделирование в Microsoft Еxcel, 6-е изд.: Пер. с англ. - М.: Издательский дом «Вильямс», 2004. - 1024 с.

4. И.И. Бажин Информационные системы менеджмента. - М.: ГУ-ВШЭ, 2000. -688с.

Заказать работу без рисков и посредников








Хочу скачать данную работу! Нажмите на слово скачать
Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Сколько стоит заказать работу? Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.
Сделать работу самостоятельно с помощью "РЕФ-Мастера" ©
Узнать подробней о Реф-Мастере
РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Экономика предприятия.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!
Как правильно написать введение?
Подробней о нашей инструкции по введению
Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.
Как правильно написать заключение?
Подробней о нашей инструкции по заключению
Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.
Всё об оформлении списка литературы по ГОСТу Как оформить список литературы по ГОСТу?
Рекомендуем
Учебники по дисциплине: Экономико-математическое моделирование







контрольная работа по предмету Экономико-математическое моделирование на тему: Экономика предприятия - понятие и виды, структура и классификация, 2017, 2018-2019 год.



Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.

Похожие работы:

Воспользоваться поиском



Скачать работу: Экономика предприятия, 2019 г.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Экономико-математическое моделирование